Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^{27}=\left(2^3\right)^9=8^9\)
\(3^{18}=\left(3^2\right)^9=9^9\)
b) ta có : \(2^{27}=\left(2^3\right)^9=8^9và3^{18}=\left(3^2\right)^9=9^9\)
vì : \(8^9< 9^9\)
nên: \(2^{27}< 3^{18}\)
a) \(2^{27}=\left(2^3\right)^9=8^9;3^{18}=\left(3^2\right)^9=9^9\)
b) Vì 89 < 99 => 227 < 318 nên 318 là số lớn hơn
\(\frac{6^3+3.6^2+3^3}{-13}=\frac{2^3.3^3+3^3.2^2+3^3.1}{-13}=\frac{3^3\left(8+4+1\right)}{-13}=\frac{27.13}{-13}=\frac{-27}{ }\)
\(2^{27}=\left(2^3\right)^9=8^9\)
\(3^{18}=\left(3^2\right)^9=9^9\)
b) Vì 9 > 8 => 89 < 99
Vậy \(2^{27}<3^{18}\)
\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.3^6}{3^5.2^5.2^6}=\frac{2^7.3^6}{3^5.2^{11}}=\frac{3}{2^4}=\frac{3}{16}\)
a) \(=\left(\frac{-1}{5}^3\right)^{100}va\left(\frac{-1}{3}^5\right)^{100}\)
\(=\left(\frac{-1}{125}\right)^{100}va\left(\frac{-1}{243}\right)^{100}\)
Mà \(\frac{-1}{125}>\frac{-1}{243}\)
\(\Rightarrow\left(\frac{-1}{5}\right)^{300}>\left(\frac{-1}{3}\right)^{500}\)
b)\(2^{27}=8^9;3^{18}=9^9\)
\(2^6\)\(0,5^2\)\(\left(\frac{1}{2}\right)^4\)\(\left(\frac{1}{2}\right)^8\)\(\left(\frac{11}{12}\right)^2\)
a) \(\left(-\dfrac{1}{5}\right)^{300}=\left(-\dfrac{1}{5}\right)^{3.100}=\left(-\dfrac{1}{125}\right)^{100}\)
\(\left(-\dfrac{1}{3}\right)^{500}=\left(-\dfrac{1}{3}\right)^{5.100}=\left(-\dfrac{1}{243}\right)^{100}\)
Vì \(\left(-\dfrac{1}{125}\right)^{100}< \left(-\dfrac{1}{243}\right)^{100}\)
Nên \(\left(-\dfrac{1}{5}\right)^{300}< \left(-\dfrac{1}{3}\right)^{500}\)
b) \(2^{27}=2^{3.9}=\left(2^3\right)^9=8^9\)
\(3^{18}=3^{2.9}=\left(3^2\right)^9=9^9\)
Vì \(8^9< 9^9\)nên \(2^{27}< 3^{18}\)
b) Ta có: 227 = (23)9 = 89
...............318 = (32)9 = 99
Vì: 8 < 9
Nên: 89 < 99
Hay: 227 < 318
a) \(8^{15}.4^{13}=\left(2^3\right)^{15}.\left(2^2\right)^{13}=2^{45}.2^{26}=2^{71}\)
b) \(\left(\frac{1}{2}\right)^{18}.\left(\frac{1}{4}\right)^{28}=\left(\frac{1}{2}\right)^{18}.\left(\frac{1}{2^2}\right)^{28}=\frac{1}{2^{18}}.\frac{1}{2^{56}}=\frac{1}{2^{74}}=\left(\frac{1}{2}\right)^{74}\)
c) \(9^{12}.27^{10}=\left(3^2\right)^{12}.\left(3^3\right)^{10}=3^{24}.3^{30}=3^{54}\)
a) = (23)15. (22)13 = 245.226 = 271
b) = \(\left(\frac{1}{2}\right)^{18}.\left(\left(\frac{1}{2}\right)^2\right)^{28}=\left(\frac{1}{2}\right)^{18}.\left(\frac{1}{2}\right)^{56}=\left(\frac{1}{2}\right)^{18+56}=\left(\frac{1}{2}\right)^{74}\)
c) = (32)12.(33)10 = 324.330 = 324+30 = 354
a)
\(10^8.2^8=\left(10.2\right)^8=20^8\)
b)
\(10^8:2^8=\left(10:2\right)^8=5^8\)
c)
\(25^4.2^8=\left(5^2\right)^4.2^8=5^8.2^8=\left(2.5\right)^8=10^8\)
d)
\(15^8.9^4=15^8.\left(3^2\right)^4=15^4.3^4=45^4\)
e)
\(27^2:25^3=\left(3^3\right)^2:\left(5^2\right)^3=3^6:5^6=\left(\frac{3}{5}\right)^6\)
a) Ta có:
b) Vì 8< 9 nên \(8^9< 9^9\)
Vậy theo câu a, ta được \(3^{18}< \) \(2^{27}\)
a) \(2^{27}=2^{3.9}=8^9\)
\(3^{18}=3^{2.9}=9^9\)
b) Vì \(8^9< 9^9\) nên \(2^{27}< 3^{18}\)