K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Vì \(MH \bot \left( P \right),O \in \left( P \right)\) nên hình chiếu của đường thẳng \(MO\) trên mặt phẳng \(\left( P \right)\) là đường thẳng \(HO\)

b) Góc giữa đường thẳng \(MO\) và hình chiếu của đường thẳng đó trên mặt phẳng \(\left( P \right)\) là góc \(\widehat {MOH}\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}M \in AB \subset \left( {ABB'A'} \right)\\M \in \left( {OMN} \right)\end{array} \right\} \Rightarrow M \in \left( {OMN} \right) \cap \left( {ABB'A'} \right)\\\left. \begin{array}{l}N \in A'B' \subset \left( {ABB'A'} \right)\\N \in \left( {OMN} \right)\end{array} \right\} \Rightarrow N \in \left( {OMN} \right) \cap \left( {ABB'A'} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {ABB'A'} \right) = MN\end{array}\)

\(M\) là trung điểm của \(AB\)

\(N\) là trung điểm của \(A'B'\)

\( \Rightarrow MN\) là đường trung bình của hình bình hành \(ABB'A'\)

\( \Rightarrow MN\parallel AA'\parallel BB'\parallel CC'\parallel DD'\)

\(\left. \begin{array}{l}O \in \left( {OMN} \right) \cap \left( {C{\rm{DD'C'}}} \right)\\MN\parallel C{\rm{D}}\\MN \subset \left( {OMN} \right)\\C{\rm{D}} \subset \left( {C{\rm{DD'C'}}} \right)\end{array} \right\}\)

\( \Rightarrow \)Giao tuyến của hai mặt phẳng \(\left( {OMN} \right)\) và \(\left( {C{\rm{DD'C'}}} \right)\) là đường thẳng \(d\) đi qua \(O\), song song với \(MN\) và \(C{\rm{D}}\).

Gọi \(P = d \cap C'D',Q = d \cap CD \Rightarrow \left( {OMN} \right) \cap \left( {C{\rm{DD'C'}}} \right) = PQ\)

\(\begin{array}{l}\left. \begin{array}{l}M \in AB \subset \left( {ABC{\rm{D}}} \right)\\M \in \left( {OMN} \right)\end{array} \right\} \Rightarrow M \in \left( {OMN} \right) \cap \left( {ABC{\rm{D}}} \right)\\\left. \begin{array}{l}Q \in C{\rm{D}} \subset \left( {ABC{\rm{D}}} \right)\\Q \in d \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow Q \in \left( {OMN} \right) \cap \left( {ABC{\rm{D}}} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {ABC{\rm{D}}} \right) = MQ\end{array}\)

\(\begin{array}{l}\left. \begin{array}{l}N \in A'B' \subset \left( {A'B'C'{\rm{D'}}} \right)\\N \in \left( {OMN} \right)\end{array} \right\} \Rightarrow N \in \left( {OMN} \right) \cap \left( {A'B'C'{\rm{D'}}} \right)\\\left. \begin{array}{l}P \in C'{\rm{D'}} \subset \left( {A'B'C'{\rm{D'}}} \right)\\P \in d \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow P \in \left( {OMN} \right) \cap \left( {A'B'C'{\rm{D'}}} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {A'B'C'{\rm{D'}}} \right) = NP\end{array}\)

Gọi \(E = MQ \cap BC,F = MQ \cap AD,G = NP \cap B'C',H = NP \cap A'D'\)

\(\begin{array}{l}\left. \begin{array}{l}E \in BC \subset \left( {BCC'B'} \right)\\E \in MQ \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow E \in \left( {OMN} \right) \cap \left( {BCC'B'} \right)\\\left. \begin{array}{l}G \in B'C' \subset \left( {BCC'B'} \right)\\G \in NP \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow G \in \left( {OMN} \right) \cap \left( {BCC'B'} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {BCC'B'} \right) = EG\end{array}\)

\(\begin{array}{l}\left. \begin{array}{l}F \in A{\rm{D}} \subset \left( {A{\rm{DD'A'}}} \right)\\F \in MQ \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow F \in \left( {OMN} \right) \cap \left( {A{\rm{DD'A'}}} \right)\\\left. \begin{array}{l}H \in A'D' \subset \left( {A{\rm{DD'A'}}} \right)\\H \in NP \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow H \in \left( {OMN} \right) \cap \left( {A{\rm{DD'A'}}} \right)\\ \Rightarrow \left( {OMN} \right) \cap \left( {A{\rm{DD'A'}}} \right) = FH\end{array}\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Ta có:

\(\begin{array}{l}MH \bot \left( P \right) \Rightarrow MH \bot OH\\MK \bot \left( Q \right) \Rightarrow MK \bot OK\\\left( {\left( P \right),\left( Q \right)} \right) = {90^ \circ } \Rightarrow \left( {MH,MK} \right) = {90^ \circ } \Rightarrow MH \bot MK\end{array}\)

Tứ giác \(MHOK\) có \(\widehat {MHO} = \widehat {MK{\rm{O}}} = \widehat {HMK} = {90^ \circ }\).

Vậy tứ giác \(MHOK\) là hình chữ nhật.

Trong \(\left( P \right)\) có đường thẳng \(OH\) vuông góc với \(\left( Q \right)\).

b) Ta có:

\(\left. \begin{array}{l}a \bot \left( Q \right) \Rightarrow a \bot OK\\MH \bot \left( P \right) \Rightarrow MH \bot a\end{array} \right\} \Rightarrow MH\parallel OK\)

Lại có \(MH \bot \left( P \right)\). Vậy \(OK \bot \left( P \right) \Rightarrow OK \bot OH\)

Tứ giác \(MHOK\) có \(\widehat {MHO} = \widehat {MK{\rm{O}}} = \widehat {HOK} = {90^ \circ }\).

Vậy tứ giác \(MHOK\) là hình chữ nhật.

\(\left( {\left( P \right),\left( Q \right)} \right) = \left( {MH,MK} \right) = \widehat {HMK} = {90^ \circ }\).

31 tháng 3 2017

Giải bài 8 trang 105 sgk Hình học 11 | Để học tốt Toán 11

a) Giả sử ta có hai đường xiên SA, SB và các hình chiếu HA, HB của chúng trên mp(α)

Giả sử HA = HB

Vì SH ⊥ mp(α) nên SH ⊥ HA và SH ⊥ SB và các tam giác SHA, SHB là các tam giác vuông. Hai tam giác vuông SHA, SHB có canh SH chung và HA = HB nên :

ΔSHA = ΔSHB SA = SB

Ngược lại nếu SA = SB thì ΔSHA = ΔSHB ⇒ HA = HB

Kết quả, ta có HA = HB SA= SB (đpcm)

b) Giả sử có hai đường xiên SA, SC và các hình chiếu HA, HC của chúng trên mp(α) với giả thiết HC > HA.

Trên đoạn HC, lấy điểm B' sao cho HA' = HA ⇒ HC > HA'. Như vậy, theo kết quả câu a) ta có SA' = SA. Ta có trong các tam giác vuông SHB', SHC thì :

SC2= SH2 + HC2

SA2 = SH2 + HA2

Vì HC > HA' nên SC2 > SA2 ⇒ SC > SA

Suy ra SC > SA

Như vậy HC > HA ⇒ SC > SA

Lí luận tương tự, ta có : SC > SA ⇒ HC > HA

Kết quả : HC > HA ⇔ SC > SA

31 tháng 3 2017

a) Gọi SN là một đường xiên khác. Xét hai tam giác vuông SHM và SHN có SH chung. Nếu SM = SN => tam giác SHM = tam giác SHN => HM = HN, ngược lại nếu HM = HN thì tam giác SHM = tam giác SHNSM => SM = SN.

b) Xét tam giác vuông SHM và SHN có SH chung. Nếu SN > SM thì \(HN^2-SN^2-SH^2\) => \(SM^2-SH^2=HM^2\) => HN > HM. Chứng minh tương tự cho chiều ngược lại.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có:

\(\left. \begin{array}{l}S \in \left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right)\\A{\rm{B}}\parallel C{\rm{D}}\\AB \subset \left( {SAB} \right)\\C{\rm{D}} \subset \left( {SC{\rm{D}}} \right)\end{array} \right\}\)

\( \Rightarrow \)Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) là đường thẳng \(d\) đi qua \(S\), song song với \(AB\) và \(C{\rm{D}}\).

Chọn A.

a: \(a\perp\left(Q\right)\)

b: Hai mặt phẳng (P) và (Q) có vuông góc với nhau

21 tháng 8 2023

tham khảo:

a) Hình chiếu b' của b trên (P) là A'B'

b)  a⊥mp(b,b′)

b⊥b′

c) a⊥mp(b,b′)

a⊥b

31 tháng 3 2017

Giải bài 4 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 4 trang 114 sgk Hình học 11 | Để học tốt Toán 11

12 tháng 7 2019

Đáp án B

Các phát biểu đúng: 1; 4; 5; 6

2. Có một và chỉ một mặt phẳng đi qua 3 điểm phân biệt không thẳng hàng

3. Nếu 1 đường thẳng có 2 điểm phân biệt thuộc một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó

7. Trên mỗi mặt phẳng, các kết quả đã biết trong hình học phẳng đều đúng