Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{2x^2+6x-x^2+2x-3-x^2-1}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+3-x+1}{x+3}\)
\(=\dfrac{8x-4}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{4}\)
\(=\dfrac{2x-1}{x-3}\)
\(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Rightarrowđcpm\)
a²+b²+c²+3=2(a+b+c)
=>a²-2a+1+b²-2b+1+c²-2c+1=1
=>(a-1) ² +(b-1) ² +(c-1) ²=1
=>a=b=c=1 dpcm
\(a^2+b^2+c^2+3=2a+2b+2c\)
<=>\(\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
<=>\(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Với mọi a;b;c thì \(\left(a-1\right)^2>=0\);\(\left(b-1\right)^2>=0\);\((c-1)^2>=0\)
Do đó \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2>=0\)
Để \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)thì ...(giải tìm a;b;c)
<=>a=b=c=1
Vậy a=b=c=1(đpcm)
Áp dụng BĐT Cauchy ta có:
\(a^2+a+1\ge3a\)
\(b^2+b+1\ge3b\)
\(c^2+c+1\ge3c\)
Cộng 3 vế BĐT lại ta có:
\(a^2+b^2+c^2+\left(a+b+c\right)+3\ge3.\left(a+b+c\right)\)
\(\Rightarrow a^2+b^2+c^2+3\ge2.\left(a+b+c\right)\)
Dấu " = " xảy ra khi và chỉ khi \(a=b=c=1\)
Mà theo đề bài ta có:
\(a^2+b^2+c^2+3=2.\left(a+b+c\right)\)
\(a=b=c=1\) ( đpcm )
Có thật là bạn có thể giải hết không vậy, violympic toán 8 vòng 8 khó lắm đấy
Trên đây nó ko cho đăng ảnh,mn chịu khó nhập link này vào nha:https://i.imgur.com/xQNntGH.png
Chọn C