Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^2(a+1)+2a(a+1)
=(a+1)(a^2+2a)
=a(a+1)(a+2)
đây là tích 3 số nguyên liên tiếp, mà trong đó thì chắc chắn có 1 số chia hết cho3, 1 số chia hết cho 2 nên tích đó chia hết cho 6.
a(2a-3)-2a(a+1)
= 2a^2 - 3a - 2a^2 - 2a
= - 5a chia hết cho 5
x^2 + 2x + 2
=(x+1)^2 +1
(x+1)^2 là số dương; 1 là số dương nên "cái kết quả trên" lớn hơn 0
-x^2 + 4x - 5
= - (x^2 - 4x + 5)
= - (x - 2)^2 + 1
vậy kết quả trên bé hơn 0
bài này mà gọi là bài lớp 8 hả còn dễ hơn bài lớp 6 em là hs lớp 6
1/
a/ \(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a(a+1)(a+2) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2,3) = 1 nên a(a+1)(a+2) chia hết cho 6. Ta có đpcm
b/ Đề sai , giả sử với a = 3
c/ \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1>0\)
d/ \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
e/ \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\)
2/ a/ \(x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
BT đạt giá trị nhỏ nhất bằng 2 tại x = 3
b/ \(-x^2+6x-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)
BT đạt giá trị lớn nhất bằng -2 tại x = 3
13.
M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)
\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)
\(=\left(x^2+10x+20\right)^2-16+16\)
\(=\left(x^2+10x+20\right)^2\) là một số chính phương
Nhiều quá, nhìn đã thấy ớn lạnh :(
Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.
\(A=4x^2+4x+11\)
\(=\left(4x^2+4x+1\right)+10\)
\(=\left(2x+1\right)^2+10\ge10\)
Min A = 10 khi: 2x + 1 = 0
<=> x = -1/2
Bài 1:
a, \(77^{n+1}=77^n.77+77^n\)
\(=77^n\left(77+1\right)=77^n.78⋮78\)
\(\Rightarrowđpcm\)
b, \(n^2\left(n-1\right)+\left(n^2-n\right)\)
\(=n^2\left(n-1\right)+n\left(n-1\right)\)
\(=\left(n^2+n\right)\left(n-1\right)=n\left(n+1\right)\left(n-1\right)\)
Vì 3 số liên tiếp chia hết cho 2, 3
Mà ( 2; 3 ) = 1
\(\Rightarrow n\left(n+1\right)\left(n-1\right)⋮6\)
\(\Rightarrowđpcm\)
c, tương tự
Bài 2:
a, \(x+y=xy\)
\(\Leftrightarrow x-xy+y=0\)
\(\Leftrightarrow x\left(1-y\right)-1+y=-1\)
\(\Leftrightarrow\left(x-1\right)\left(1-y\right)=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\1-y=-1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x+1=-1\\1-y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy x = y = 2 hoặc x = y = 0
b, tương tự
Ta có:
2a(a+1) chắc chắn chia hết cho 2 và a2(a+1) cũng vậy nên tổng trên chia hết cho 2 (1)
a có dạng: 3k;3k+1;3k+2 (k E N)
+) a=3k => tổng trên chia hết cho 3
+) a=3k+1 => a2(a+1) chia 3 dư 2 và: 2a(a+1) chia 3 dư 1
=> tổng trên chia hết cho 3 (2+1=3 chia hết cho 3)
+) a=3k+2=> a+1 chia hết cho 3 nên: tổng trên chia hết cho 3 (2)
Từ (1) và (2)=> tổng trên chia hết cho 2 và 3 mà: (2;3)=1=> a chia hết cho 2.3=6 (ĐPCM)
b, tương tự
thôi shitbo ko biết đừng trả lời hộ mình
a) \(a^2\left(a+1\right)+2a\left(a+1\right)\)
\(=\left(a+1\right)\left(a^2+2a\right)\)
\(=a\left(a+1\right)\left(a+2\right)\)
Vì a; a + 1 và a + 2 là 3 số liên tiếp nên :
+) chắc chắn có một số chia hết cho 2 (1)
+)chắc chắn có một số chia hết cho 3 (2)
Mà ƯC(2;3) = 1
Từ (1) và (2) => \(a\left(a+1\right)\left(a+2\right)⋮2\cdot3=6\left(đpcm\right)\)
mik lm mẫu câu a nhé
a, \(=\left(a+1\right).\left(a^2+2a\right)\)
\(=a\left(a+1\right)\left(a+2\right)\)tích 3 stn liên tiếp chia hết cho 6
2/a/\(\Leftrightarrow9x^2-18x+9+y^2-6y+9+2z^2+4z+2=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\).Từ đó suy ra
\(\left\{{}\begin{matrix}x-1=0\\y-3=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
b/\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bzx+cxy=0\)
Ta có \(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ac}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{ayz+bzx+cxy}{abc}=1\)
\(\RightarrowĐPCM\)
1/Mạn phép sửa đề :\(\left\{{}\begin{matrix}3x^2+y^2+2x-2y-1=0\left(1\right)\\2x\left(x+y\right)=2\left(2\right)\end{matrix}\right.\)
Cộng (1) và (2) đc \(x^2-2xy+y^2+2x-2y-1=-2\)
\(\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)+1=0\)
\(\Leftrightarrow\left(x-y+1\right)^2=0\)
Suy ra x-y=-1.Thế ngược lại vào 2 tìm đc x,y
.Nếu mà bạn giữ nguyên đề như vậy thì
Giải phương trình để tìm x bằng cách tìm a, b, và c
của phương trình bậc hai sau đó áp dụng công thức phương trình bậc hai. x=−1−√−3y2+6y+43 Lớp 9 x=−1+√−3y2+6y+43
a: \(\Leftrightarrow x^2-2x+1+y^2+2y+1+z^2-4z+4=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+1\right)^2+\left(z-2\right)^2=0\)
=>x=1; y=-1; z=2
b: \(a^2\left(a+1\right)+2a\left(a+1\right)\)
\(=\left(a+1\right)\left(a^2+2a\right)\)
\(=a\left(a+1\right)\left(a+2\right)\)
Vì a;a+1;a+2 là ba số nguyên liên tiếp
nên \(a\left(a+1\right)\left(a+2\right)⋮3!\)
hay \(a\left(a+1\right)\left(a+2\right)⋮6\)