K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
KN
0
KJ
1
AH
Akai Haruma
Giáo viên
9 tháng 12 2021
Lời giải:
Gọi ƯCLN(a,b) = d thì $a=dx, b=dy$ với $x,y$ là 2 số tự nhiên nguyên tố cùng nhau.
BCNN(a,b) = dxy
Theo bài ra ta có: $dxy+d=15$
$d(xy+1)=15$
$\Rightarrow 15\vdots d$ nên $d\in\left\{1;3;5;15\right\}$
Nếu $d=1$ thì $xy+1=15\Rightarrow xy=14$.
Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,14), (14,1), (2,7), (7,2)$
$\Rightarrow (a,b)=(1,14), (14,1), (2,7), (7,2)$
Nếu $d=3$ thì $xy=4$. Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,4), (4,1)$
$\Rightarrow (a,b)=(3,12), (12,3)$
Nếu $d=5$ thì $xy=2$. Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(2,1), (1,2)$
$\Rightarrow (a,b)=(10,5), (5,10)$
Nếu $d=15$ thì $xy=0$ (vô lý, loại)
NT
0
CV
0
TT
0
B
0