\(\frac{4+x}{7+y}\)= \(\frac{4}{7}\) và x+y=2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2015

Gợi ý thui:

a) \(\frac{4+x}{7+y}=\frac{4}{7}\Leftrightarrow\frac{4+x}{4}=\frac{7+y}{7}\)(Từ 1 tỉ lệ thức có thể lập 3 tỉ lệ thức khác)

 Áp dụng tính chất dãy t/s = nhau là xong

b) => \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)

=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{4z}{96}=\frac{2x+3y+4z}{30+60+96}\)(Áp dụng t/c dãy tỉ số = nhau nữa đó)

=> \(\frac{3x}{45}=\frac{4y}{80}=\frac{5z}{120}=\frac{3x+4y+5z}{45+80+120}\)

=> \(\frac{2x+3y+4z}{30+60+96}=\frac{3x+4y+5z}{45+80+120}\)

Áp dụng tính chất từ 1 tỉ lệ thức có thể lập 3 tỉ lệ thức còn lại là xong

 

 

 

3 tháng 1 2017

a)                   Giải

Theo bài ra, ta có:

=>\(\frac{x+4}{7+y}=\frac{4}{7}\)

=>7.(x+4)=4.(7+y)

=>28+7x=28+4x

=>28-28=7x-4x

=>0=7x-4x

<=>7x=4y

=>\(\frac{x}{4}=\frac{y}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{22}{11}=2\)

=>x=2.4=8

    y=2.7=14

Mik ko bít trả lời câu 2 Nhưng ĐÚNG cho mik nha :D

\(\frac{x+4}{7+y}\Rightarrow\frac{x+4}{4}=\frac{7+y}{7}\)

Áp dụng t/c dãy tỉ số = nhau ta được :

 \(\frac{x+4}{4}=\frac{7+y}{7}=\frac{x+4+7+y}{4+7}=\frac{22+7+4}{4+7}=3\)

\(\Rightarrow\frac{x+4}{4}=3\Rightarrow x=5\)

\(\frac{7+y}{y}=3\Rightarrow y=14\)

1 tháng 8 2018

tui lớp 5 giải dc phần a có cần tui giúp ko

19 tháng 10 2019

Đéo biết ok

19 tháng 10 2019

Vũ Tiến Sỹ 

Đừng để bị phốt ạ

6 tháng 7 2017

b) từ đề bài suy ra được x=2y/3. Z=5y/3 thay vào x.y.z=810 ta được. 10/9 nhân y^3 =810 => y^3=729=>y=9=>x=6. Z=15.                            

25 tháng 5 2016

Ta có: \(\frac{x}{3}\)=\(\frac{y}{4}\)=> \(\frac{x}{15}\)=\(\frac{y}{20}\)

          \(\frac{y}{5}\)=\(\frac{z}{6}\)=> \(\frac{y}{20}\)=\(\frac{z}{24}\) Vậy \(\frac{x}{15}\)=\(\frac{y}{20}\)=\(\frac{z}{24}\)

đặt \(\frac{x}{15}\)=\(\frac{y}{20}\)=\(\frac{z}{24}\)=k => x=15k; y=20k; z=24k

Thay x=15k; y=20k ; z=24k vào Biểu thức M ta có:

M=\(\frac{2x+3y+4z}{3x+4y+5z}\)=\(\frac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}\)=\(\frac{k\left(30+60+96\right)}{k\left(45+80+120\right)}\)=\(\frac{186}{245}\)

25 tháng 5 2016

Theo bài ra ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow x=\frac{3y}{4}\) ; \(\frac{y}{5}=\frac{z}{6}\Leftrightarrow z=\frac{6y}{5}\), Vậy ta có : \(M=\frac{2x+3y+z}{3x+4y+5z}=\frac{2.\frac{3y}{4}+3y+4.\frac{6y}{5}}{3.\frac{3y}{4}+4y+5.\frac{6y}{5}}=\frac{\frac{93y}{10}}{\frac{49y}{4}}=\frac{93}{10}.\frac{4}{49}=\frac{186}{245}\)

12 tháng 7 2019

a

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)

Thay vào,ta được:

\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)

\(\Leftrightarrow4k+2+9k+6-4k-3=50\)

\(\Leftrightarrow9k+5=50\)

\(\Leftrightarrow9k=45\)

\(\Leftrightarrow k=5\)

12 tháng 7 2019

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)

\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)

\(\Rightarrow x=2\cdot2+1=5\)

\(y=4\cdot2-3=5\)

\(z=2\cdot6+5=17\)

Câu c tương tự như câu 1

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

21 tháng 7 2017

B)ĐỀ BÀI \(\Leftrightarrow\left(\frac{X}{2}\right)^3=\frac{X}{2}.\frac{Y}{3}.\frac{Z}{5}=\frac{810}{30}=27\\ \)

             \(\Leftrightarrow\frac{X}{2}=3\Rightarrow X=6\)

 TỪ ĐÓ SUY RA Y=9;Z=15