K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2015

bạn phải tách từng câu ra. chứ kiểu này k ai trả lời cho đâu

10 tháng 4 2016

2)

a)x2-y2=(x+y).(x-y)=(87+13).(87-13)=100.74=7400

b)x3-3x2+3x-1=(x-1)3=(101-1)3=1003=1000000

c)x3+9x2+27x+27=(x+3)3=(97+3)3=1003=1000000

4)

a)x2-6x+10=x2-6x+9+1=(x-3)2+1>=1>0 voi moi x

b)4x-x2-5= -(x2-4x+5)= -(x2-4x+4+1)= -(x-2)2 - 1<0 voi moi x

1 tháng 11 2018

1)a) (2x+1)(x-2)-2x\(^2\).(1-3x)

= 2x\(^2\)-4x+x-2-2x\(^2\)-6x\(^3\)

= -3x-2-6x\(^3\)

d)bài này mình ko biết kẻ thế nào nên bạn tự làm nha hình như kết quả ra x\(^2\)-4x-4 ko có dư thì phải

2)a) x\(^3\)+x\(^2\)-4x-4

= x\(^2\).(x+1)-4.(x+1)

=(x+1).(x\(^2\)-4)

=(x+1).(x-2).(x+2)

b) 2x\(^2\)-9x-11

=2x\(^2\)+2x-11x-11

=2x.(x+1)-11.(x+1)

=(x+1).(2x-11)

c) ax-ay-x\(^2\)+2xy-y\(^2\)

=a.(x-y)-(x\(^2\)-2xy+y\(^{^{ }2}\))

=a.(x-y)-(x-y)\(^2\)

=(x+y).(a-x+y)

d)4xy\(^4\)-36x\(^3\)y\(^2\)

=4xy\(^2\).(y\(^2\)-9x\(^2\))

=4xy\(^2\).(y-3x).(y+3x)

3)a) x\(^2\) thì mình biết chứ mũ 3 thì ko chắc đúng

b) 3x\(^2\)-5x-2=0

3x\(^2\)-2-5x=0

3x\(^2\)+3-5-5x=0

3.(x\(^2\)+1)-5.(1+x)=0

3.(x+1).(x-1)-5.(x+1)=0

3.(x+1).(x-1-5)=0

3.(x+1).(x-6)=0

Vậy x+1=0 hoặc x-6=0

x=(-1) x=6

c)(x+1)\(^2\)=(x+1)

(x+1).(x+1)-(x+1)=0

(x+1).(x+1-1)=0

(x+1).x=0

Vậy x=0 hoặc x+1=0

x=(-1)

d)(x-4).(x+3)-2x.(4-x)=0

(x-4).(x+3)+2x.(x-4)=0

(x-4).(x+3+2x)=0

(x-4).(3x+3)=0

3.(x-4).(x+1)=0

Vậy x-4=0 hoặc x+1=0

x=4 x=(-1)

16 tháng 10 2020

Ai giúp mk bài 2 với ạ, mk làm đc bài 1 rồi vui

1.Chứng minh rằng nếu : \(\dfrac{x}{a}\) = \(\dfrac{y}{b}=\dfrac{z}{c}\) thì : (x2 + y2 + z2 ) (a2 +b2 +c2 ) = (ax +by + cz)2 2. Cho a và b là hai số tự nhiên . Biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1 3. a) Chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 vs mọi n là số nguyên b) Chứng minh rằng : (n-1)(n+4)-(n-4)(n+1) luôn chia hết cho 6 vs mọi số nguyên n 4. Xác định a,b,c,d...
Đọc tiếp

1.Chứng minh rằng nếu : \(\dfrac{x}{a}\) = \(\dfrac{y}{b}=\dfrac{z}{c}\) thì :

(x2 + y2 + z2 ) (a2 +b2 +c2 ) = (ax +by + cz)2

2. Cho a và b là hai số tự nhiên . Biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1

3. a) Chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 vs mọi n là số nguyên

b) Chứng minh rằng : (n-1)(n+4)-(n-4)(n+1) luôn chia hết cho 6 vs mọi số nguyên n

4. Xác định a,b,c,d biết ;

a) (ax2+bx+c)(x+3)=x3 +2x2-3x vs mọi x

b) x4+x3-x2+ax+b=(x2+x-2)(x2+cx+d) vs mọi x

5. Cho đa thức : f(x)=x(x+1)(x+2)(ax+b)

a) Xác định a,b để f(x)-f(x-1)=x(x+1)(2x+1) vs mọi x

b) Tính tổng S = 1.2.3+2.3.5+...+n(n+1)(2n+1) theo n (vs n là số nguyên dương )

6.Xác định a,b,c để :

X3-ax2+bx-c=(x-a)(x-b)(x-c) vs mọi x

Mong các bn giải dùm mk nhanh nhanh mk cần gấp nha ! thank you

1

Bài 3: 

a: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

=-5n chia hết cho 5

b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)

\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)

\(=n^2+3n-4-\left(n^2-3n-4\right)\)

\(=6n⋮6\)

* Dạng toán về phép chia đa thức Bài 9. Làm phép chia: a. 3x3y2 : x2 b. (x5 + 4x3 – 6x2) : 4x2 c. (x3 – 8) : (x2 + 2x + 4) d. (3x2 – 6x) : (2 – x) e. (x3 + 2x2 – 2x – 1) : (x2 + 3x + 1) Bài 10: Làm tính chia 1. (x3 – 3x2 + x – 3) : (x – 3) 2. (2x4 – 5x2 + x3 – 3 – 3x) : (x2 – 3) 3. (x – y – z)5 : (x – y – z)3 4. (x2 + 2x + x2 – 4) : (x + 2) 5. (2x3 +...
Đọc tiếp

* Dạng toán về phép chia đa thức

Bài 9. Làm phép chia:

a. 3x3y2 : x2 b. (x5 + 4x3 – 6x2) : 4x2 c. (x3 – 8) : (x2 + 2x + 4)

d. (3x2 – 6x) : (2 – x) e. (x3 + 2x2 – 2x – 1) : (x2 + 3x + 1)

Bài 10: Làm tính chia

1. (x3 – 3x2 + x – 3) : (x – 3) 2. (2x4 – 5x2 + x3 – 3 – 3x) : (x2 – 3)

3. (x – y – z)5 : (x – y – z)3 4. (x2 + 2x + x2 – 4) : (x + 2)

5. (2x3 + 5x2 – 2x + 3) : (2x2 – x + 1) 6. (2x3 – 5x2 + 6x – 15) : (2x – 5)

Bài 11:

1. Tìm n để đa thức x4 – x3 + 6x2 – x + n chia hết cho đa thức x2 – x + 5

2. Tìm n để đa thức 3x3 + 10x2 – 5 + n chia hết cho đa thức 3x + 1

3*. Tìm tất cả các số nguyên n để 2n2 + n – 7 chia hết cho n – 2.

Bài 12: Tìm giá trị nhỏ nhất của biểu thức

1. A = x2 – 6x + 11 2. B = x2 – 20x + 101 3. C = x2 – 4xy + 5y2 + 10x – 22y + 28

Bài 13: Tìm giá trị lớn nhất của biểu thức

1. A = 4x – x2 + 3 2. B = – x2 + 6x – 11

Bài 14: CMR

1. a2(a + 1) + 2a(a + 1) chia hết cho 6 với a là số nguyên

2. a(2a – 3) – 2a(a + 1) chia hết cho 5 với a là số nguyên

3. x2 + 2x + 2 > 0 với mọi x

4. x2 – x + 1 > 0 với mọi x

5. –x2 + 4x – 5 < 0 với mọi x

4
31 tháng 12 2017

* Dạng toán về phép chia đa thức

Bài 9. Làm phép chia:

a. \(3x^3y^2:x^2=3xy^2\)

b.\(\left(x^5+4x^3-6x^2\right):4x^2=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)

c. \(\left(x^3-8\right):\left(x^2+2x+4\right)=\left(x-2\right)\left(x^2+2x+4\right):\left(x^2+2x+4\right)=x-2\)

d. \(\left(3x^2-6x\right):\left(2-x\right)=-3x\left(2-x\right):\left(2-x\right)=-3x^2\)

e. \(\left(x^3+2x^2-2x-1\right):\left(x^2+3x+1\right)\)

\(=\left[\left(x^3-1\right)+\left(2x^2-2x\right)\right]:\left(x^2+3x+1\right)\)

\(=\left[\left(x-1\right)\left(x^2+x+1\right)+2x\left(x-1\right)\right]:\left(x^2+3x+1\right)\)

\(=\left(x-1\right)\left(x^2+x+1+2x\right):\left(x^2+3x+1\right)\)

\(=\left(x-1\right)\left(x^2+3x+1\right):\left(x^2+3x+1\right)\)

\(=x-1\)

Bài 10: Làm tính chia

( Bài này có thể đặt phép chia hoặc phân tích thành nhân tử của Số bị chia sao cho có một nhân tử chia hết cho số chia)

C1 : Đặt phép tính chia

C2 : Đặt nhân tử chung ,tùy vào từng câu

1. \(\left(x^3+3x^2+x-3\right):\left(x-3\right)\)

\(=\left[x^2\left(x-3\right)+\left(x-3\right)\right]:\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2+1\right):\left(x-3\right)\)

\(=x^2+1\)

2.( \(2x^4-5x^2+x^3-3-3x\) ) : \(x^2-3\)

\(=\left(2x^4+x^3-5x^2-3x-3\right):\left(x^2-3\right)\)

2x^4 + x^3 - 5x^2 - 3x - 3 x^2 - 3 2x^2 + x + 1 2x^4 -6x^2 x^3+ x^2 - 3x- 3 x^3 - 3x x^2 -3 x^2 - 3 0

3. (x – y – z)5 : (x – y – z)3

\(=\left(x-y-z\right)^{5-3}\)

\(=\left(x-y-z\right)^2\)

\(=x^2+y^2+z^2-2xy-2xz+2yz\)

4. \(\left(x^2+2x+x^2-4\right):\left(x+2\right)\)

\(=\left[x\left(x+2\right)+\left(x-2\right)\left(x+2\right)\right]:\left(x+2\right)\)

\(=\left(x+2\right)\left(x+x-2\right):\left(x+2\right)\)

\(=2x-2\)

5.( \(2x^3+5x^2-2x+3\) ) : \(\left(2x^2-x+1\right)\)

2x^3 + 5x^2 - 2x + 3 2x^2 - x + 1 x + 3 2x^3 - x^2 + x - 6x^2 - 3x + 3 6x^2 - 3x + 3 - 0

\(6.\left(2x^3-5x^2+6x-15\right):\left(2x-5\right)\)
2x^3 - 5x^2 + 6x - 15 2x - 5 x^2 + 3 2x^3 - 5x^2 - 6x - 15 6x - 15 - 0

P/S : Tối mk lm tiếp nha bn , bh mk có việc bận

31 tháng 12 2017

Bài 11.

1. Do đa thức chia có bậc là 4 , đa thức bị chia có bậc 2 nên thương có bậc 2

Đặt : x4 - x3 + 6x2 - x + n = ( x2 - x + 5)( x2 + ax + b)

x4 - x3 + 6x2 - x + n= x4 + ax3 + bx2 - x3 - ax2 - bx + 5x2 + 5ax+5b

x4 - x3 + 6x2 - x + n= x4 - x3( a + 1) + x2( b - a + 5) - x( b - 5a) + 5b

Đồng nhất hệ số , ta có :

* a + 1 = 1 => a = 0

* b - a + 5 = 6 => b = 6 - 5 + a = 1

* b - 5a = 1

* 5b = n => n = 5.1 = 5

Vậy , để............thì n = 5

2. Bài này không phức tạp nên chia bt nha , nhưng mk làm cách đồng nhất nhé ( máy tính nhà mk giống bạn Giang bị lỗi phần chia)

Do : đa thức chia bậc 3 , đa thức bị chia bậc 1 nên đa thức thương có bậc 2

Đặt : 3x3 + 10x2 - 5 + n = ( 3x + 1)( x2 + ax + b)

3x3 + 10x2 - 5 + n = 3x3 + 3ax2 + 3bx + x2 + ax + b

3x3 + 10x2 - 5 + n = 3x3 + x2( 3a + 1) + x( 3b + a) + b

Đồng nhất hệ số , ta có :

* 3a + 1 = 10 => 3a = 9 => a = 3

* 3b + a = 0 => 3b = -3 => b = -1

* b = n - 5 => n = b + 5 = -1 + 5 = 4

Vậy, để........thì : n = 4

3. 2n^2+n-7 n-2 2n - 2n^2-4n 5n-7 +5 - 5n-10 3

Để,.......thì :

n - 2 thuộc Ư( 3)

Lập bảng giá trị , ta có :
n-2 n 1 3 -1 -3 3 5 1 -1

Vậy,....