Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(A=\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}+\frac{1}{2^8}\)
\(2A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\)
\(2A-A=\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}\right)-\left(\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}+\frac{1}{2^7}+\frac{1}{2^8}\right)\)
\(A=\frac{1}{2^2}-\frac{1}{2^8}\)
\(A=\frac{1}{4}-\frac{1}{256}=\frac{63}{256}\)
\(\Rightarrow\frac{63}{256}.x=\frac{1}{512}=\frac{1}{2^9}\)
\(\Rightarrow\frac{63}{2^8}.x=\frac{1}{2^9}\)
\(\Rightarrow x=\frac{1}{2^9}:\frac{63}{2^8}=\frac{1}{2^9}.\frac{2^8}{63}=\frac{1}{2.63}=\frac{1}{126}\)
Ủng hộ mk nha !!! ^_^
13,44 . x - (1,6 + x) . 0,5 - 3,7 . (x - 0,9) =13,618
=> 13,44x - 0,8 - 0,5x - 3,7x + 3,33 - 13,618 = 0
=> 9,24x - 11,088 = 0
=> 9,24x = 11,088
=> x = 1,2
13,44 . x - (1,6 + x) . 0,5 - 3,7 . (x - 0,9) =13,618
=> 13,44x - 0,8 - 0,5x - 3,7x + 3,33 - 13,618 = 0
=> 9,24x - 11,088 = 0
=> 9,24x = 11,088
=> x = 1,2
1. 2006/987654321 + 2007/246813579 = 2007/246813579 + 2006/987654321
=>
2.
3 - (5.3/8 + X - 7 . 5/24) : 6 . 2/3 =2
3 - (15/8 + X - 35/24) : 4 = 2
3 - (15/8 + X - 35/24) = 2 . 4
3 - (15/8 + X - 35/24) = 8
15/8 + X - 35/24 = 3 - 8
15/8 + X - 35/24 = -5
15/8 + X = -5 + 35/24
15/8 + X = -85/24
X = -85/24 - 15/8
X = -65/12
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(< =>\frac{128}{256}+\frac{64}{256}+\frac{32}{256}+\frac{16}{256}+\frac{8}{256}+\frac{4}{256}+\frac{2}{256}+\frac{1}{256}\)
\(< =>\frac{128+64+32+16+8+4+2+1}{256}\)
\(< =>\frac{255}{256}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(< =>\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(< =>\frac{1}{1}-\frac{1}{100}\)
\(< =>\frac{99}{100}\)
\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{100}\right)\)
\(< =>\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)
\(< =>\frac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\)
\(< =>\frac{1}{100}\)
mk chuc ban hoc tot nhe :))
1) 1/1.2 + 1/2.3 + ... + 1/6.7
= 1 - 1/2 + 1/2 - 1/3 + ... + 1/6 - 1/7
= 1 - 1/7
= 6/7
2) 1/2 + 1/6 + 1/12 + .. + 1/72
= 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/8.9
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/8 - 1/9
= 1 - 1/9
= 8/9
3) \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2019}\right)\)
= \(\frac{1}{2}.\frac{2}{3}...\frac{2019}{2020}\)
= \(\frac{1.2....2019}{2.3...2020}\)
= \(\frac{1}{2020}\)
4) A = \(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{512}\)
= \(\frac{1}{2^2}+\frac{2}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^9}\)
=> 2A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\)
Lấy 2A - A = \(\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^9}\right)\)
A = \(\frac{1}{2}-\frac{1}{2^9}\)
Có :
A = \(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(\Rightarrow2A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(\Rightarrow2A-A=\frac{1}{2}-\frac{1}{256}\)
\(A=\frac{128}{256}-\frac{1}{256}=\frac{127}{256}\)
ko bít lm bài này ak! dễ mak
bày cho câu b nha!