Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, 1028+8 chia hết cho 9
1028+8=(1027*10)+8=10009+8 chia hết cho 8
(8,9)=1 nên 1028+8 chia hết cho 27
a, chứng minh rằng : nếu (ab+cd+eg) \(⋮\)11 thì abcdeg \(⋮\)11
abcdeg=10000.ab+100.cd+eg=9999.ab+99.cd+(ab+cd+eg)
Vì 9999.ab chia hết cho11,99.cd chia hết cho 11 và ab+cd+ag chia hết cho 11
=> abcdeg chia hết cho 11(đcpcm)
Ta có : abcdeg = ab.10000 + cd.100 + eg
= ab.9999 + cd.99 + (ab + cd + eg)
= 99(ab.101 + cd) + (ab + cd + eg)
Vì 99(ab.101 + cd) chia hết cho 11 và (ab + cd + eg) chia hết cho 11
Vậy abcdeg chia hết cho 11
a) Ta có : abcdeg = ab . 10000 + cd . 100 + eg
= ab . 9999 + ab + cd . 99 + cd + eg
= ab . 11 . 909 + ab + cd . 11 . 9 + cd + eg
= (ab . 909 + cd . 9) . 11 + (ab + cd + eg)
Vì (ab . 909 + cd .9) . 11 ⋮ 11 và (ab + cd + eg) ⋮ 11 nên abcdeg ⋮ 11
a)
100a+10b+c-100c-10b-c = 600 + 10b + 3
99a - 99c = 10b + 603
99 (a-c) = 10b +603
Ta có : 10b là số tròn chục =>a-c phải nhân vs 99 có đuôi là 3 hay a-c = 7
99.7 = 10b + 603 => b=9
Ta thấy : a > c vậy a = 8 => c=1 ; a = 7 => c=0
Vậy số đó là 891 hoặc 790.
b)
dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11
theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11
suy ra: (b+d+g) - (a+c+e) chia hết cho 11
suy ra : /abcdeg chia hết cho 11
Ta có:\(abc-cba=6b3\)
\(\Rightarrow100a+10b+c-100c-10b-a=6b3\)
\(\Rightarrow99a-99c=6b3\)
\(\Rightarrow99.\left(a-c\right)=6b3\)
Vì 99.(a-c):99=> 6b3 :99
\(\Rightarrow b=9\Rightarrow a-c=7\)
Bn tính nốt nha