Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-2}{16}=\frac{-4}{2-x}\)
\(\Leftrightarrow\frac{x-2}{16}+\frac{4}{2-x}=0\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(2-x\right)+4.16}{16\left(2-x\right)}=0\)
\(\Leftrightarrow\left(x-2\right)\left(2-x\right)+64=0\)
\(\Leftrightarrow-\left(x-2\right)\left(x-2\right)=-64\)
\(\Leftrightarrow-\left(x-2\right)^2=-8^2\)
\(\Leftrightarrow\left(x-2\right)^2=8^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=8\\x-2=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-6\end{cases}}}\)
P/s: Mik nghĩ bài này lớp 8 thì đúng hơn vì nó liên quan đến hằng đẳng thức
Nếu là lp 8 thì giải theo cách này nha:
\(\Rightarrow\left(x-2\right).\left(2-x\right)=16.\left(-4\right)\)
\(2x-x^2-4+2x=-64\)
\(-x^2+4x-4=-64\)
\(-\left(x+2\right)^2=-64\)
\(\Rightarrow\left(x+2\right)^2=8^2\)
\(\Rightarrow\orbr{\begin{cases}x+2=8\\x+2=-8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=6\\x=-10\end{cases}}\)
\(x-\frac{2}{16}=-\frac{4}{2}-x\)
\(x+x=-\frac{4}{2}+\frac{2}{16}\)
\(2x=-\frac{15}{8}\)
\(x=-\frac{15}{16}\)
\(x-\frac{2}{16}=-\frac{4}{2}-x.\)
\(\Leftrightarrow x-\frac{1}{8}=-2-x\)
\(\Leftrightarrow x+x=-2+\frac{1}{8}\)(xài quy tắc chuyển vế nha)
\(\Leftrightarrow2x=\frac{-16+1}{8}\)
\(\Leftrightarrow2x=-\frac{15}{8}\Rightarrow x=-\frac{15}{8}\div2=-\frac{15}{8}\cdot\frac{1}{2}=-\frac{15}{16}\)
Mình làm hơi quá chi tiết và dài, bạn có thể lược bớt nha.
Học tốt ^3^
Ta có :
\(xy=x:y\)
\(\Rightarrow y^2=1\)
\(\Rightarrow\left[\begin{array}{nghiempt}y=1\\y=-1\end{array}\right.\)
(+) y = 1
\(\Rightarrow x+1=x\) ( vô lý )
(+) \(y=-1\)
\(\Rightarrow x=\frac{1}{2}\) ( Nhận )
Vậy \(\left(x;y\right)=\left(\frac{1}{2};-1\right)\)
\(\dfrac{1}{2}-\left|2-3x\right|=\sqrt{\dfrac{19}{16}}-\sqrt{\left(-0,75\right)^2}\\ \Rightarrow\dfrac{1}{2}-\left|2-3x\right|=\dfrac{\sqrt{19}}{4}-\dfrac{3}{4}\\ \Rightarrow\left|2-3x\right|=\dfrac{1}{2}-\dfrac{\sqrt{19}-3}{4}\)
\(\Rightarrow\left|2-3x\right|=\dfrac{5-\sqrt{19}}{4}\)
\(TH_1:x\le\dfrac{2}{3}\\ 2-3x=\dfrac{5-\sqrt{19}}{4}\\ \Rightarrow3x=\dfrac{3+\sqrt{19}}{4}\\ \Rightarrow x=\dfrac{3+\sqrt{19}}{12}\left(tm\right)\)
\(TH_2:x>\dfrac{2}{3}\\ 3x-2=\dfrac{5-\sqrt{19}}{4}\\ \Rightarrow3x=\dfrac{13-\sqrt{19}}{4}\\ \Rightarrow x=\dfrac{13-\sqrt{19}}{12}\left(tm\right)\)
Vậy \(x\in\left\{\dfrac{3+\sqrt{19}}{12};\dfrac{13-\sqrt{19}}{12}\right\}\)
\(\dfrac{1}{2}-\left|2-3x\right|=\sqrt[]{\dfrac{19}{16}}-\sqrt[]{\left(-0,75\right)^2}\)
\(\Rightarrow\dfrac{1}{2}-\left|2-3x\right|=\dfrac{\sqrt[]{19}}{4}-0,75\)
\(\Rightarrow\dfrac{1}{2}-\left|2-3x\right|=\dfrac{\sqrt[]{19}}{4}-\dfrac{3}{4}\)
\(\Rightarrow\left|2-3x\right|=\dfrac{1}{2}-\dfrac{\sqrt[]{19}}{4}+\dfrac{3}{4}\)
\(\Rightarrow\left|2-3x\right|=\dfrac{5-\sqrt[]{19}}{4}\)
\(\Rightarrow\left[{}\begin{matrix}2-3x=\dfrac{5-\sqrt[]{19}}{4}\\2-3x=\dfrac{-5+\sqrt[]{19}}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=2-\dfrac{5-\sqrt[]{19}}{4}\\3x=2-\dfrac{\sqrt[]{19}-5}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=\dfrac{3+\sqrt[]{19}}{4}\\3x=\dfrac{13-\sqrt[]{19}}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt[]{19}}{12}\\x=\dfrac{13-\sqrt[]{19}}{12}\end{matrix}\right.\)
24 - 16(x - 1/2) = 23
=> 16(x - 1/2) = 24 - 23
=> 16(x - 1/2) = 1
=> x - 1/2 = 1/16
=> x = 1/16 + 1/2
=> x = 9/16
\(24-16(x-\frac{1}{2})=23\)
\(16(x-\frac{1}{2})=24-23\)
\(16(x-\frac{1}{2})=1\)
\(x-\frac{1}{2}=\frac{1}{16}\)
\(x=\frac{1}{16}+\frac{1}{2}\)
\(x=\frac{9}{16}\)
Vậy số thực x cần tìm là \(\frac{9}{16}\)
Chúc bạn hok tốt ~