Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4 :
xy - x + 2y = 3
x ( y - 1 ) + 2y - 2 = 3 - 2
x ( y - 1 ) + 2 ( y - 1 ) = 1
( y - 1 ) ( x + 2 ) = 1
Xét bảng :
y-1 | 1 | -1 |
x+2 | 1 | -1 |
y | 2 | 0 |
x | -1 | -3 |
Vậy (x;y) = (-1;2) = (-3;0)
a, xy-x+2y=3
<=>x(y-1)+2(y-1)=1
<=>(x+2)(y-1)=1
x+2 | 1 | -1 | |
y-1 | 1 | -1 |
x | -1 | -3 |
y | 2 | 0 |
1
C=3210=32.105=(32)105=9105
D=2310=23.105=(23)105=8105
Vì9105>8105
=>C>D
2
a)2x.(3y-2)+(3y-2)=6
(3y-2).(2x+1)=6
=>6\(⋮\)2x+1
=>2x+1\(\in\)Ư(6)={1;2;3;-1;-2;-3}
Mà 2x+1 là số lẻ
=>2x+1\(\in\){1;3;-1;-3}
Ta có bảng sau:
2x+1 | -1 | -3 | 1 | 3 |
3y-2 | -6 | -2 | 6 | 2 |
x | \(-1\notin N\) | \(-2\notin N\) | \(0\in N\) | \(1\in N\) |
y | \(\frac{-4}{3}\notin N\) | \(0\in N\) | \(\frac{8}{3}\notin N\) | \(\frac{4}{3}\notin N\) |
Vậy x\(\in\){0;1}
y\(\in\){0}
Phần này bạn lên học 24h nha Câu hỏi của Đỗ Thế Minh Quang
Chúc bn học tốt
(Sửa \(cn-bm\rightarrow cn-dm\))
Ta có :
\(\left\{{}\begin{matrix}ad-bc=1\\cn-dm=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}ad=1+bc\\cn=1+dm\end{matrix}\right.\)
\(\dfrac{x}{y}=\dfrac{a}{b}.\dfrac{d}{c}=\dfrac{ad}{bc}=\dfrac{1+bc}{bc}=1+\dfrac{1}{bc}>1\left(bc>0\right)\)
\(\Rightarrow x=\dfrac{a}{b}>y=\dfrac{c}{d}\left(2\right)\)
\(\dfrac{y}{z}=\dfrac{c}{d}.\dfrac{n}{m}=\dfrac{cn}{dm}=\dfrac{1+dm}{dm}=1+\dfrac{1}{dm}>1\left(dc>0\right)\)
\(\Rightarrow y=\dfrac{c}{d}>z=\dfrac{m}{n}\left(2\right)\)
\(\left(1\right);\left(2\right)\Rightarrow x>y>z\)
a/
$xy-x+2y=3$
$\Rightarrow x(y-1)+2(y-1)=1$
$\Rightarrow (x+2)(y-1)=1$
Do $x,y$ nguyên nên $x+2, y-1$ cũng là số nguyên. Mà tích của chúng bằng $1$ nên ta xét các TH sau:
TH1:
$x+2=1, y-1=1\Rightarrow x=-1; y=2$
TH2:
$x+2=-1, y-1=-1\Rightarrow x=-3; y=0$
b/
\(101M=\frac{101^{103}+101}{101^{103}+1}=1+\frac{100}{101^{103}+1}> 1+\frac{100}{101^{104}+1}=\frac{101^{104}+101}{101^{104}+1}=101.\frac{101^{103}+1}{101^{104}+1}=101N\)$\Rightarrow M> N$