Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có \(\frac{a}{b}< 1\).
\(\Rightarrow\frac{a+m}{b+m}< 1\)(vì \(\frac{a}{b}< 1\))
Khi \(\frac{a+m}{b+m}< 1\)ta có \(\frac{a}{b}+m\)
\(\Leftrightarrow\)\(\frac{a}{b}< \frac{a+m}{b+m}\)
Ta có: \(\frac{a+m}{b+m}\) = \(\frac{\left(a+m\right).b}{b\left(b+m\right)}\) = \(\frac{ab+bm}{b\left(b+m\right)}\) và \(\frac{a}{b}\) = \(\frac{a.\left(b+m\right)}{b\left(b+m\right)}\)= \(\frac{ab+am}{b\left(b+m\right)}\)
Ta có: \(\frac{a}{b}\) < 1 => a<b => am<bm ( m \(\ne\) 0) => ab+ am< ab+bm
=> \(\frac{ab+bm}{b\left(b+m\right)}\) > \(\frac{ab+am}{b\left(b+m\right)}\) => \(\frac{a+m}{b+m}\) > \(\frac{a}{b}\)
\(\frac{1010+1111+1212+1313+1414+1515+1616+1717}{2020+2121+2222+2323+2424+2525+2626+2727}\)
\(=\frac{101.10+101.11+...+101.17}{101.20+101.21+...+101.27}\)
\(=\frac{101.\left(10+11+...+17\right)}{101.\left(20+21+...+27\right)}\)
\(=\frac{108}{188}\)
\(=\frac{27}{47}\)
\(2>\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{4}{96}\right)\cdot5.y>\frac{5}{6}\)
\(\Rightarrow2>\left(\frac{1}{6}+\frac{2}{15}+\frac{3}{40}+\frac{1}{24}\right):5.y>\frac{5}{6}\)
\(\Rightarrow2>\left(\frac{20}{120}+\frac{16}{120}+\frac{9}{120}+\frac{5}{120}\right):5.y>\frac{5}{6}\)
\(\Rightarrow2>\frac{5}{12}:5.y>\frac{5}{6}\)
\(\Rightarrow2>\frac{1}{12}.y>\frac{5}{6}\)
Đặt :\(\frac{1}{12}.y=2\Rightarrow y=2:\frac{1}{12}=24\)
\(\frac{1}{12}.y=\frac{5}{6}\Rightarrow y=\frac{5}{6}:\frac{1}{12}=10\)
\(\Rightarrow24>y>10\)
\(\Rightarrow y\in\left\{11;12;...;23\right\}\)
Ta có : \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)
\(\frac{n+3}{n+4}=1-\frac{1}{n+4}\)
Mà \(\frac{1}{n+2}>\frac{1}{n+4}\)
Nne : \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)
Do a < b nên \(\frac{3}{a}>\frac{3}{b}\) hay \(\frac{3}{b}< \frac{3}{a}\).
Ta thấy \(\frac{39}{40}=\frac{3}{a}+\frac{3}{b}< \frac{3}{a}+\frac{3}{a}=\frac{6}{a}\) nên suy ra \(\frac{39}{40}< \frac{6}{a}\Rightarrow\frac{78}{80}< \frac{78}{13a}\Rightarrow80>13a\)
Mà \(\frac{3}{a}< \frac{39}{40}\Rightarrow\frac{39}{13a}< \frac{39}{40}\Rightarrow13a>40\)
Nên 80 > 13a > 40. Vậy a = { 4 ; 5 ; 6 }
- Với a = 4 thì \(b=\frac{3}{\frac{39}{40}-\frac{3}{4}}=\frac{3}{\frac{9}{40}}=\frac{120}{9}=\frac{40}{3}\) ( Loại vì không phải số tự nhiên )
- Với a = 5 thì \(b=\frac{3}{\frac{39}{40}-\frac{3}{5}}=\frac{3}{\frac{3}{8}}=\frac{24}{3}=8\) ( Hợp lệ )
- Với a = 6 thì \(b=\frac{3}{\frac{39}{40}-\frac{3}{6}}=\frac{3}{\frac{19}{40}}=\frac{120}{19}\) ( Loại vì không phải số tự nhiên )
Vậy a = 5 ; b = 8
a/
\(1\frac{1}{2}x1\frac{1}{3}x1\frac{1}{4}x1\frac{1}{5}x1\frac{1}{6}=\frac{3}{2}x\frac{4}{3}x\frac{5}{4}x\frac{6}{5}x\frac{7}{6}=\frac{7}{2}=3\frac{1}{2}\)
b/
x=0; y=5