Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6,
=a4 [-(a-b)-(c-a)] + [b4(c-a)+c4(a-b)]
=rồi nhóm hạng tử chung lại
=và sau đó tách ra bằng hằng đẳng thức
kết quả =(a-b)(c-a)(c-b)(a2+b2+c2+ab+bc+ca)
Bài này khá dài nên mk nhác viết , bn cố gắng làm bài nhé !
a) \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(=x^2y-x^2z+y^2\left(z-x\right)+z^2x-z^2y\)
\(=\left(x^2y-z^2y\right)+\left(z^2x-x^2z\right)+y^2\left(z-x\right)\)
\(=y\left(x+z\right)\left(x-z\right)-xz\left(x-z\right)-y^2\left(x-z\right)\)
\(=\left(x-z\right)\left(xy+yz-xz-y^2\right)\)
\(=\left(x-z\right)\left[\left(xy-xz\right)+\left(yz-y^2\right)\right]\)
\(=\left(x-z\right)\left[x\left(y-z\right)-y\left(y-z\right)\right]\)
\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)
Bài 1:
\(A=a^4-2a^3+3a^2-4a+5\)
\(=(a^4-2a^3+a^2)+2a^2-4a+5\)
\(=(a^4-2a^3+a^2)+2(a^2-2a+1)+3\)
\(=(a^2-a)^2+2(a-1)^2+3\)
\(=a^2(a-1)^2+2(a-1)^2+3=(a-1)^2(a^2+2)+3\)
Vì \((a-1)^2\geq 0,\forall a\in\mathbb{R}; a^2+2>0, \forall a\)
\(\Rightarrow A=(a-1)^2(a^2+2)+3\geq 0+3=3\)
Vậy \(A_{\min}=3\Leftrightarrow (a-1)^2=0\Leftrightarrow a=1\)
Bài 2:
a)
\(M=3xyz+x(y^2+z^2)+y(x^2+z^2)+z(x^2+y^2)\)
\(=3xyz+x^2y+x^2z+yx^2+yz^2+zx^2+zy^2\)
\(=(x^2y+xy^2+xyz)+(y^2z+yz^2+xyz)+(zx^2+z^2x+xyz)\)
\(=xy(x+y+z)+yz(y+z+x)+xz(z+x+y)\)
\(=(x+y+z)(xy+yz+xz)\)
b)
\(Q=(a+b+c)^3-a^3-b^3-c^3\)
\(=[(a+b)+c]^3-a^3-b^3-c^3\)
\(=(a+b)^3+c^3+3(a+b)^2c+3(a+b)c^2-a^3-b^3-c^3\)
\(=a^3+b^3+3ab^2+3a^2b+c^3+3(a+b)^2c+3(a+b)c^2-a^3-b^3-c^3\)
\(=3ab(a+b)+3(a+b)c(a+b+c)\)
\(=3(a+b)[ab+c(a+b+c)]=3(a+b)[a(b+c)+c(b+c)]\)
\(=3(a+b)(b+c)(a+c)\)