\(\dfrac{2016x-2016}{3x+2}\) có giá trị nhỏ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

a/ \(M=\dfrac{2016x-2016}{3x+2}=672-\dfrac{3360}{3x+2}\)

Để M nhỏ nhất thì \(\dfrac{3360}{3x+2}\) lớn nhất

Hay \(3x+2\) là số dương nhỏ nhất (vì x nguyên)

\(\Rightarrow3x+2\ge1\)

\(\Rightarrow x\ge-\dfrac{1}{3}=-0,333\)

Vì x nguyên nên \(x=0\) là giá trị cần tìm

6 tháng 6 2017

còn phần b nữa mà bạn ơi!

10 tháng 1 2019

hok đến kì 2 rùi ah

nhanh thế

11 tháng 1 2019

\(f\left(x\right)=2016x^4-32\left(25k+2\right)x^2+k^2-100\)

Đặt \(x^2=t\left(t\ge0\right)\)

\(f\left(t\right)=2016t^2-32\left(25.k+2\right)t+k^2-100\)

Vì f(t) là đa thức bậc 2 nên chỉ có tối đa là 2 nghiệm \(t_1;t_2\)

Ta có nhận xét: \(x^2=t\left(t\ge0\right)\)nên với mỗi t >0 sẽ nhận được 2 nghiệm x và t=0 nhận được nghiệm x=0

Như vậy thì để đa thức f(x) có 3 nghiệm phân biệt thì đa thức f(t) phải có một ngiệm bằng 0 và một nghiệm t lớn hơn không

Khi đó: a=\(-\sqrt{t}\),b=0, c=\(\sqrt{t}\)

0 là một nghiệm của đa thức f(t) <=> f(0)=0 <=> \(k^2-100=0\Leftrightarrow k=\pm10\)

+) Với k=10; f(t)= 2016t^2-8064t=2016.t.(t-4)

f(t) có nghiệm t=0 và t=4

=> f(x) có 3 nghiệm a=-2, b=0, c=2

=> a-c=-2-2=-4

+) Với k=-10; f(t)=2016.t^2+7936t=t(2016t+7836)

f(t) có nghiệm t=0 và t=-7836/2016 (loại vì t>0)

4 tháng 4 2018

Đề bài : \(f\left(x\right)=2016x^4-32.\left(25k+2\right)x^2+k^2-100\)

Bài làm : Giả sử đa thức f(x) có nghiệm x = a thì -a cũng là nghiệm của f(x) và 1 nghiệm x = 0

Thay x = 0 vào f(x) ta có : f(0) = k- 100 = 0 <=> k = 10 hoặc k = -10

+ Với k = 10 ta có : f(x) = 2016x- 8064x2 = 0 <=> x2(2016x2 - 8064) = 0

<=> x= 0 hoặc x2 = 4 <=> x = 0 hoặc x = 2 hoặc x = -2

Do c > b > a => a = -2, b = 0, c = 2 => a - c = -4

+ Với k = -10 =>  x2(2016x2 + 8064) = 0

<=> x2 = -4 (Loại) hoặc x2 = 0 <=> x = 0

Vậy hiệu a - c = -4

2 tháng 4 2018

aitrar lời câu này đi

28 tháng 4 2020

Sửa lại  f(x) = \(2016x^4-32\left(25k+2\right)x^2+k^2-100\). Và đề là tìm k.

f(x) có đúng 3 nghiệm  phân biệt  <=> f(x) có 1 nghiệm dương và 1 nghiệm bằng 0 

Do đó: f(0) = 0 

<=> \(k^2-100=0\)

<=> k = 10 hoặc k = -10 

Với k = 10  thay vào ta có: \(f\left(x\right)=2016x^4-8064x^2\) có 3 nghiệm  => k = 10 thỏa mãn

Với k  = -10 thay vào ta có: \(f\left(x\right)=2016x^4+7936x^2\) có 1 nghiệm => k = -10 loại

Vậy  k = 10

28 tháng 4 2020

Cô ơi, em nghĩ là f(x) có 1 nghiệm bằng 0 và 2 nghiệm nguyên đối nhau (khác 0) chứ ạ, sao lại 1 nghiệm dương, 

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe

6 tháng 6 2017

b/ Theo đề bài thì ta có:

\(\left\{{}\begin{matrix}f\left(1\right)=f\left(-1\right)\\f\left(2\right)=f\left(-2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a_4+a_3+a_2+a_1+a_0=a_4-a_3+a_2-a_1+a_0\\16a_4+8a_3+4a_2+2a_1+a_0=16a_4-8a_3+4a_2-2a_1+a_0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a_3+a_1=0\\4a_3+a_1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a_3=0\\a_1=0\end{matrix}\right.\)

Ta có: \(f\left(x\right)-f\left(-x\right)=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0-\left(a_4x^4-a_3x^3+a_2x^2-a_1x+a_0\right)\)

\(=2a_3x^3+2a_1x=0\)

Vậy \(f\left(x\right)=f\left(-x\right)\)với mọi x

6 tháng 6 2017

a/ Áp dụng tính chất dãy tỷ số bằng nhau ta có:

\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)

\(\Rightarrow c-a=-2\left(a-b\right)=-2\left(b-c\right)\)

Thế vào B ta được

\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)

\(=4\left(a-b\right)\left(b-c\right)-\left[-2\left(a-b\right).\left(-2\right).\left(b-c\right)\right]\)

\(=4\left(a-b\right)\left(b-c\right)-4\left(a-b\right)\left(b-c\right)=0\)

a) thu gọn đi rùi tìm ngiệm nhưng chắc đa thức P(x) ko có nghiệm đâu!!!!

nghĩ thui

16 tháng 4 2016

bạn làm cho mình câu b nhé