K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

\(a)\) Ta có : 

\(A=\left|x-1,35\right|\ge0\)

Dấu "=" xảy ra khi \(\left|x-1,35\right|=0\)

\(\Rightarrow\)\(x-1,35=0\)

\(\Rightarrow\)\(x=1,35\)

Vậy \(A_{min}=0\) khi \(x=1,35\)

\(b)\) Ta có : 

\(\left|2x-8\right|\ge0\)

\(\Rightarrow\)\(\frac{3}{14}-\left|2x-8\right|\le\frac{3}{14}\)

Dấu "=" xảy ra khi \(\left|2x-8\right|=0\)

\(\Rightarrow\)\(2x-8=0\)

\(\Rightarrow\)\(2x=8\)

\(\Rightarrow\)\(x=4\)

Vậy \(B_{max}=\frac{3}{14}\) khi \(x=4\)

Chúc bạn học tốt ~ 

1 tháng 2 2017

a) Ta có: \(\left(2x+\frac{1}{3}\right)^4\ge0\)

\(\Rightarrow A=\left(2x+\frac{1}{3}\right)^4-1\ge-1\)

Vậy \(MIN_A=-1\) khi \(x=\frac{-1}{6}\)

b) Ta có: \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\) ( do \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\) )

\(\Rightarrow B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\le3\)

Vậy \(MAX_B=3\) khi \(x=\frac{3}{10}\)

18 tháng 10 2019

a) Ta có: 3|x - 14| \(\ge\)\(\forall\)x

=> 3|x - 14| + 4 \(\ge\)\(\forall\)x

=> \(\frac{6}{3\left|x-14\right|+4}\le\frac{3}{2}\forall x\)

Dấu "=" xảy ra <=> x - 14 = 0 <=> x = 14

Vậy MaxA = 3/2 <=> x = 14

8 tháng 11 2020

b) Mình có: |2x + 6| = \(\orbr{\begin{cases}2x+6\\-2x-6\end{cases}}\)\(\Rightarrow\)BMin = - 2x- 6  + 2 + 2x = -4 khi x \(\le\)-3

23 tháng 1 2017

mk ko biết, nhìn hoi phức tạp nhỉ

22 tháng 5 2019

A = 3 x | 1 - 2x | - 5

Ta co : | 1 - 2x | \(\ge\)0 nen 3 x | 1 - 2x | \(\ge\)0

A = 3 x | 1 - 2x | - 5 \(\ge\)- 5

Vậy min A = -5 \(\Leftrightarrow\)x = \(\frac{1}{2}\)

1 bài thôi . còn lại tương tự

bài cuối dùng BĐT : | a | + | b | \(\ge\)| a + b | nhé

22 tháng 5 2019

Vậy còn tìm max ạ???

5 tháng 7 2017

Bài 2 : 

 Ta có : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\in R\)

\(\Rightarrow A=\frac{3}{4}+\left(x-\frac{1}{2}\right)^2\ge\frac{3}{4}\forall x\in R\)

Vậy Amin = \(\frac{3}{4}\) dấu "=" chỉ sảy ra khi x = \(\frac{1}{2}\)

6 tháng 7 2017

Cảm ơn bạn nhiều nha

Còn câu b bạn suy nghĩ được chưa

31 tháng 10 2016

a) Để A lớn nhất thì \(\frac{15}{4.\left|3x+7\right|+3}\) lớn nhất hay 4.|3x + 7| + 3 nhỏ nhất

Có: \(4.\left|3x+7\right|+3\ge3\forall x\)

Dấu "=" xảy ra khi |3x + 7| = 0

=> 3x + 7 = 0

=> 3x = -7

\(\Rightarrow x=\frac{-7}{3}\)

Với x = \(\frac{-7}{3}\) thay vào đề bài ta được A = 10

Vậy \(A_{Max}=10\) khi x = \(\frac{-7}{3}\)

b) Để B lớn nhất thì \(\frac{21}{8.\left|15x-21\right|+7}\) lớn nhất hay 8.|15x - 21| + 7 nhỏ nhất

Có: \(8.\left|15x-21\right|+7\ge7\forall x\)

Dấu "=" xảy ra khi |15x - 21| = 0

=> 15x - 21 = 0

=> 15x = 21

\(\Rightarrow x=\frac{21}{15}=\frac{7}{5}\)

Với \(x=\frac{7}{5}\) thay vảo đề bài ta tìm được B = \(\frac{8}{3}\)

Vậy \(B_{Max}=\frac{8}{3}\) khi x = \(\frac{7}{5}\)

c) Có: \(\begin{cases}\left|x+1\right|\ge x+1\\\left|3x-4\right|\ge4-3x\\\left|2x-1\right|\ge2x-1\end{cases}\)\(\forall x\)

\(\Rightarrow C\ge\left(x+1\right)+\left(4-3x\right)+\left(2x-1\right)+5\)

hay \(C\ge9\)

Dấu "=" xảy ra khi \(\begin{cases}x+1\ge0\\3x-4\le0\\2x-1\ge0\end{cases}\)\(\Rightarrow\begin{cases}x\ge-1\\3x\le4\\2x\ge1\end{cases}\)\(\Rightarrow\begin{cases}x\ge-1\\x\le\frac{3}{4}\\x\ge\frac{1}{2}\end{cases}\)\(\Rightarrow\frac{1}{2}\le x\le\frac{3}{4}\)

Vậy \(C_{Max}=9\) khi \(\frac{1}{2}\le x\le\frac{3}{4}\)

31 tháng 10 2016

thanks bn nhìu lắm lun

27 tháng 9 2016

a ) \(A=\left|x+1\right|+\left|x+2\right|-2x+3\ge2x+3-2x+3=6\)

Dấu " = " xảy ra khi \(\left(x+2\right)\left(x+1\right)\ge0\)

b ) 

\(B=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\)

Dấu " = " xảy ra khi \(\left(2x+3\right)\left(1-2x\right)\ge0\)

c )

\(C=\left|x-1\right|+\left|x-2\right|+\left|x-2\right|\ge\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

Dấu " = " xảy ra khi \(x=2\)

  

Y
5 tháng 3 2019

câu a) mk k hiểu lắm!