Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$A=2+2^2+2^3+...+2^{60}$
$\Rightarrow 2A=2^2+2^3+2^4+...+2^{61}$
$\Rightarrow 2A-A=2^{61}-2$
$\Rightarrow A=2^{61}-2$
b.
$A=(2+2^2+2^3)+(2^4+2^5+2^6)+....+(2^{58}+2^{59}+2^{60})$
$=2(1+2+2^2)+2^4(1+2+2^2)+....+2^{58}(1+2+2^2)$
$=(1+2+2^2)(2+2^4+...+2^{58})$
$=7(2+2^4+...+2^{58})\vdots 7$
-----------------------------
$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^{57}+2^{58}+2^{59}+2^{60})$
$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+...+2^{57}(1+2+2^2+2^3)$
$=(1+2+2^2+2^3)(2+2^5+...+2^{57})$
$=15(2+2^5+...+2^{57})$
$\Rightarrow A\vdots 15$ hay $A\vdots 3,5$
`a, x/7 =-4/14`
`=> 14x=7.(-4)`
`=>14x=-28`
`=>x=-28:14`
`=>x=-2`
`b,x/2=-2/-x`
`=>x/2=2/x`
`=>x.x=2.2`
`=>x^2=4`
`=>x= +-2`
`c,(x-1)/5=5/(x-1)`
`=>(x-1)^2 = 5.5`
`=>(x-1)^2=25`
`=>(x-1)^2=5^2`
\(\Rightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
`d,x+3/2=-12/16`
`=>x=-12/16 -3/2`
`=>x= -12/16 - 24/16`
`=>x= -36/16`
`=>x=-9/4`
a) A = 1 + 2 + 2² + ... + 2⁴¹
⇒ 2A = 2 + 2² + 2³ + ... + 2⁴²
⇒ A = 2A - A
= (2 + 2² + 2³ + ... + 2⁴²) - (1 + 2 + 2² + ... + 2⁴¹)
= 2⁴² - 1
b) A = 1 + 2 + 2² + ... + 2⁴¹
= (1 + 2 + 2²) + (2³ + 2⁴ + 2⁵) + ... + (2³⁹ + 2⁴⁰ + 2⁴¹)
= 7 + 2³.(1 + 2 + 2²) + ... + 2³⁹.(1 + 2 + 2²)
= 7 + 2³.7 + ... + 2³⁹.7
= 7.(1 + 2³ + ... + 2³⁹) ⋮ 7
Vậy A ⋮ 7
Ta có:
A = 1 + 2 + 2² + 2³ + ... + 2⁴⁰ + 2⁴¹
= (1 + 2) + (2² + 2³) + ... + (2⁴⁰ + 2⁴¹)
= 3 + 2².(1 + 2) + ... + 2⁴⁰.(1 + 2)
= 3 + 2².3 + ... + 2⁴⁰.3
= 3.(1 + 2² + ... + 2⁴⁰) ⋮ 3
Vậy A ⋮ 3
c) A = 1 + 2 + 2² + 2³ + ... + 2⁴⁰
= (1 + 2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶ + 2⁷) + ... + (2³⁸ + 2³⁹ + 2⁴⁰ + 2⁴¹)
= 15 + 2⁴.(1 + 2 + 2² + 2³) + ... + 2³⁸.(1 + 2 + 2² + 2³)
= 15 + 2⁴.15 + ... + 2³⁸.15
= 15.(1 + 2⁴ + ... + 2³⁸)
= 5.3.(1 + 2⁴ + ... + 2³⁸) ⋮ 5
Vậy A chia 5 dư 0
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$
`2A - A = - 1 + 2^42`$\\$
hay `A = -1 + 2^42`$\\$
bai 1 :x la so chan (chia het cho 2)
x la so le (khong chia het cho 2
bai 2:tong cua 5 so tu nhien lien tiep chia het cho 5 vi tong 5 so tu nhien lien tiep la so co tan cung 0,5
bai 3:b,xy+yx=(x nhan 10)+y+(y nhan 10)+x=10x+y+10y+x=11x+11y.11x va 11y chia het cho 11. vay xy+yx chia het cho 11
các bạn bỏ bài 1 nha mik bít lm bài đó rùi có ai bít lm kooo huhu*^^
a) (43 - 13) . (- 3) + 27(- 14 - 16)
= 30 . (- 3) + 27(- 30)
= 30 . (- 3) + (- 27) . 30
= 30 . [(- 3) + (- 27)]
= 30 . (- 30)
= - 90
Bài 1:
Để A chia hết cho 3 thì 48+x chia hết cho 3
hay x chia hết cho 3
Để A không chia hết cho 3 thì x+48 không chia hết cho 3
hay x không chia hết cho 3
Bài 2:
a=24k+10=2(12k+5) chia hết cho 2
a=24k+10=24k+8+2=4(6k+2)+2 không chia hết cho 4
1. Cho tổng A = 12+15+21+x với x \(\in\) \(ℕ\). Tìm điều kiện của x để A chia hết cho 3, để A không chia hết cho 3.
- Để A chia hết cho 3 thì x chia hết cho 3.
- Để A không chia hết cho 3 thì x không chia hết cho 3.
2. Khi chia số tự nhiên a cho 24, ta đc số dư là 10. Hỏi số a có chia hết cho 2 không? Có chia hết cho 4 không?
3. Đề thiếu
a chia hết cho 2 vì 24 và 10 đều chia hết cho 2
a không chia hết cho 4 vì 24 chia hết cho 4 nhưng 10 không chia hết cho 4
a. A=24+25+...2101
Suy ra 2A=2(24+25+...+2101)
2A= 2.24+2.25+...+2.2101
2A= 25+26+...+2102
Biết A=2A-A.
Suy ra A=(25+26+...+2102)-(24+25+...+2101)
Vậy A= 2102-24
b. Biết A=2102-24=2102-16 nên 2x=2102. Vậy x=102.
c. A=1.(24+25)+22.(24+25)+...+296.(24+25)
A=(24+25).(1+22+...296)
A=48.(1+22+...296)
Vì 48⋮12 nên 48.(1+22+...296)⋮12. Vậy A⋮12.
a. A=24+25+...+2101
Suy ra 2A=2(24+25+...+2101)
2A= 2.24+2.25+...+2.2101
2A= 25+26+...+2102
Biết A=2A-A.
Suy ra A=(25+26+...+2102)-(24+25+...+2101)
Vậy A= 2102-24
b. Biết A=2102-24=2102-16 nên 2x=2102. Vậy x=102.
c. A=1.(24+25)+22.(24+25)+...+296.(24+25)
A=(24+25).(1+22+...296)
A=48.(1+22+...296)
Vì 48⋮12 nên 48.(1+22+...296)⋮12. Vậy A⋮12.