\(\sqrt{x}-x\)

Tìm x để A dương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2018

Điều kiện: \(\hept{\begin{cases}x>0;x\ne1;x\ne4\\\sqrt{x}-1>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne4\\x>1\end{cases}}}\)

Để A dương <=>\(2-\sqrt{x}>0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)

Đối chiếu điều  kiện ta có:  1<x<4 

7 tháng 10 2017

\(A>0\Leftrightarrow\sqrt{x}-x>0\)

\(\Leftrightarrow\sqrt{x}>x\Leftrightarrow x>x^2\)

\(\Leftrightarrow x\left(x-1\right)< 0\)

\(\Leftrightarrow0< x< 1\)

7 tháng 10 2017

\(0;1\)

9 tháng 11 2019

\(A=\frac{15\sqrt{x}-11}{x-\sqrt{x}+3\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{45\sqrt{x}-11}{\left(\sqrt{x}+3\right)(\sqrt{x}-1)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{45\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{37\sqrt{x}-5x-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

mọi người giúp mình với nha 

mình cảm ơn các bạn nhiều>-<

25 tháng 2 2019

ĐK: \(x\ge0\)

\(P=x+a+b+\frac{ab}{x}=\left(x+\frac{ab}{x}\right)+a+b\)

Áp dụng BĐT cosi cho 2 số dương x, ab/x ta có:

\(x+\frac{ab}{x}\ge2\sqrt{ab}\)

=> \(P\ge2\sqrt{ab}+a+b\)

Dấu "=" xảy ra <=> \(x=\frac{ab}{x}\Leftrightarrow x^2=ab\Leftrightarrow x=\sqrt{ab}\)( vì x dương)

11 tháng 7 2017

a, \(P=\frac{x-4}{\sqrt{x}\left(\sqrt{x-2}\right)}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{x-2\sqrt{x}}\)

b. Với \(x=4+2\sqrt{3}\Rightarrow P=\frac{\sqrt{4+2\sqrt{3}}+2}{4+2\sqrt{3}-2\sqrt{4+2\sqrt{3}}}\)

\(=\frac{\sqrt{3}+1+2}{4+2\sqrt{3}-2\left(\sqrt{3}+1\right)}=\frac{3+\sqrt{3}}{2}\)

C. \(P>0\Rightarrow\frac{\sqrt{x}+2}{x-2\sqrt{x}}>0\Rightarrow x-2\sqrt{x}>0\Rightarrow x>4\)

11 tháng 10 2018

\(M=\left(\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}+3}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+3}-1\right)\)  ĐKXĐ : \(x\ge0;x\ne-3;x\ne3\)

\(M=\frac{\left(\sqrt{x}+3\right)^2-\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-3}\)

\(M=\frac{x+6\sqrt{x}+9-x+6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{-3}\)

\(M=\frac{12\sqrt{x}}{\sqrt{x}+3}.\frac{1}{-3}\)

\(M=\frac{-4\sqrt{x}}{\sqrt{x}+3}\)