\(a\). \(\sqrt{2x-5}=2\)

\(b.\)<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2020

d) \(\sqrt{x+1}+2=0\)( ko tìm đc )

e) \(9x^2=4\Leftrightarrow x^2=\frac{4}{9}\Leftrightarrow x=\pm\sqrt{\frac{4}{9}}\)

g) \(2x^2=\frac{9}{50}\Leftrightarrow x^2=\frac{9}{100}\Leftrightarrow x=\pm\sqrt{\frac{9}{100}}\)

28 tháng 7 2020

z) \(3-2x=1\Leftrightarrow2x=2\Leftrightarrow x=1\)

y) \(\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=0\\1-\sqrt{x}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

8 tháng 8 2017

b) pt \(\Leftrightarrow\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

Đk: \(x\ge\dfrac{5}{2}\)

\(\Leftrightarrow\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\) (*)

TH1: \(\sqrt{2x-5}-1>0\Leftrightarrow x>3\)

(*) \(\Leftrightarrow\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\Leftrightarrow2\sqrt{2x-5}=2\Leftrightarrow\sqrt{2x-5}=1\Leftrightarrow x=3\left(L\right)\)

TH2: \(\sqrt{2x-5}+3< 0\) (vô lý)

TH3: \(x\le3\)

(*) \(\Leftrightarrow\sqrt{2x-5}+3+1-\sqrt{2x-5}=4\Leftrightarrow4=4\) (luôn đúng)

KL: \(\dfrac{5}{2}\le x\le3\)

8 tháng 8 2017

câu a, biểu thức trong dấu căn thứ 2 là \(x-2\sqrt{2x-1}\) hay \(x-\sqrt{2x-1}\) (có số 2 hay không?)

14 tháng 8 2017

I) xd mọi x

\(\sqrt{x^2-8x+16}+\sqrt{x^2-10x+25}=9\)

\(\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-5\right)^2}=9=>\left|x-4\right|+\left|x-5\right|=9\)

\(\left[{}\begin{matrix}x< 4\Rightarrow4-x+5-x=>x=0\left(n\right)\\4\le x< 5\Rightarrow x-4+5-x=9\left(vn\right)\\x\ge5\Rightarrow x-4+x-5=9\Rightarrow x=9\left(n\right)\\\end{matrix}\right.\)

kết luận

\(\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)

6 tháng 8 2019

a) \(\sqrt{2}.x^2=\sqrt{98}\Rightarrow x^2=7\Rightarrow x=\sqrt{7}\)

d)\(3\sqrt{x}-5-18=0\Rightarrow3\sqrt{x}=23\)

\(\sqrt{x}=\frac{23}{3}\Rightarrow x=\left(\frac{23}{3}\right)^2\)

24 tháng 8 2017

a) \(\sqrt{3}x-\sqrt{12}=0< =>\sqrt{3}x=\sqrt{12}=>x=2\)

Vay S = { 2 }

b) \(\sqrt{2}x+\sqrt{2}=\sqrt{8}+\sqrt{18}< =>\sqrt{2}x=\sqrt{8}+\sqrt{18}-\sqrt{2}< =>\sqrt{2}x=2\sqrt{2}+3\sqrt{2}-\sqrt{2}\) <=> \(\sqrt{2}x=4\sqrt{2}=>x=4\)

Vay S = { 4 }

c) \(\sqrt{5}x^2-\sqrt{20}=0< =>\sqrt{5}x^2=\sqrt{20}< =>x^2=2=>x=\sqrt{2}\)

Vay S = {\(\sqrt{2}\) }

d) \(\sqrt{x^2+6x+9}=3x+6< =>\sqrt{\left(x+3\right)^2}=3x+6< =>x+3=3x+6< =>-2x=\) \(3=>x=-\dfrac{3}{2}\)

Vay S = { - 3/2 }

e) \(\sqrt{x^2-4x+4}-2x+5=0< =>\sqrt{\left(x-2\right)^2}-2x+5=0< =>x-2-2x+5=0\) <=> \(-x+3=0< =>-x=-3=>x=3\)

Vay S = { 3 }

F) \(\sqrt{\dfrac{2x-3}{x-1}}=2\)

<=> \(\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)

Vay S = { 1/2 }

g) \(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2< =>\sqrt{\dfrac{2x-3}{x-1}}=2< =>\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)

24 tháng 8 2017

bạn chưa có ĐKXĐ nên chưa xét kết quả có đúng vs Đk ko, có vài câu sai kết quả

6 tháng 8 2016

Câu a với câu b giống nhau nha bạn

ĐKXĐ: \(\hept{\begin{cases}2x-3\ge0\\x-1>0\end{cases}\Rightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x>1\end{cases}\Rightarrow}x\ge\frac{3}{2}}\)

Ta có: \(\sqrt{\frac{2x-3}{x-1}}=2\Rightarrow\frac{2x-3}{x-1}=4\Rightarrow2x-3=4\left(x-1\right)\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\left(l\right)\)

                                                                   Vậy \(x\in\phi\)

c/ \(\sqrt{3}x^2-\sqrt{48}=0\Rightarrow x^2=\frac{\sqrt{48}}{\sqrt{3}}=4\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

d/ \(\sqrt{x-2}=2x-5\)            Điều kiện nghiệm: \(x\ge\frac{5}{2}\)

\(\Rightarrow x-2=4x^2-20x+25\)

\(\Rightarrow4x^2-21x+27=0\)

\(\Rightarrow\left(x-3\right)\left(4x-9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{9}{4}\left(l\right)\end{cases}}\)

                                                            Vậy x = 3

7 tháng 8 2016

a) \(pt\Leftrightarrow\frac{2x-3}{x-1}=4\)

Bài giải chỉ cần như vậy vì khi \(\frac{2x-3}{x-1}=4\)thì hiển nhiên \(\frac{2x-3}{x-1}\ge0\)nên ko cần điều kiện xác định 

(Giải ĐKXĐ còn khó hơn giải bài như trên)

b) \(pt\Leftrightarrow\hept{\begin{cases}2x-3\ge0\\x-1>0\\\frac{2x-3}{x-1}=4\end{cases}}\)

c) \(pt\Leftrightarrow x^2=\sqrt{\frac{48}{3}}=4\Leftrightarrow x=\pm2\)

d)\(pt\Leftrightarrow\hept{\begin{cases}2x-5\ge0\\x-2=\left(2x-5\right)^2\end{cases}}\)

Khi \(x-2=\left(2x-5\right)^2\) thì hiển nhiên \(x-2\ge0\) nên ko cần đặt điều kiện \(x-2\ge0\)

11 tháng 6 2019

\(f,\sqrt{x^2-25}-\sqrt{x-5}=0\)

=> \(\sqrt{x^2-25}=\sqrt{x-5}\)

=>\(x^2-25=x-5\)

=>\(x^2-x=25-5=20\)

=>( đến đoạn này mình xin chịu )

11 tháng 6 2019

\(a,\sqrt{16x}=8\)

=>\(16x=8^2\)

=>\(16x=64\)

=>\(x=64:16=4\)

Vậy \(x\in\left\{4\right\}\)

\(b,\sqrt{x^2}=2x-1\)

=>\(x=2x-1\)

=>\(2x-x=1\)

=>\(x=1\)

Vậy \(x\in\left\{1\right\}\)

\(c,\sqrt{9.\left(x-1\right)}=21\)

=>\(9.\left(x-1\right)=21^2=441\)

=> \(x-1=441:9=49\)

=>\(x=49+1=50\)

Vậy \(x\in\left\{50\right\}\)

\(d,\sqrt{4\left(1-x\right)^2}-6=0\)

=>\(\sqrt{4\left(1-x\right)^2}=0+6=6\)

=> \(4\left(1-x\right)^2=6^2=36\)

=>\(\left(1-x\right)^2=36:4=9\)

=>\(1-x=\sqrt{9}=3\)

=>\(x=1-3=-2\)

Vậy \(x\in\left\{-2\right\}\)

\(g,\sqrt{9\left(2-3x\right)^2}=6\)

=> \(9.\left(2-3x\right)^2=6^2=36\)

=> \(\left(2-3x\right)^2=36:9=4\)

=> \(2-3x=\sqrt{4}=2\)

=>\(3x=2-2=0\)

=>\(x=0:3=0\)

Vậy \(x\in\left\{0\right\}\)

( còn các bài còn lại mình sẽ nghĩ tiếp , HS6-7 làm bài )

7 tháng 12 2016

Bài 1:

a)Đk:\(x\ge\frac{3}{2}\)

\(pt\Leftrightarrow3-x=-\sqrt{2x-3}\)

Bình phương 2 vế ta có:

\(\left(3-x\right)^2=\left(-\sqrt{2x-3}\right)^2\)

\(\Leftrightarrow x^2-6x+9=2x-3\)

\(\Leftrightarrow x^2-8x+12=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=6\end{array}\right.\).Thay vào thấy x=2 ko thỏa mãn

Vậy x=6

8 tháng 12 2016

b)Đk:\(x\ge1\)

\(pt\Leftrightarrow\sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)

Bình phương 2 vế của pt ta có:

\(\left(\sqrt{x-1}\right)^2=\left(\sqrt{3x-2}+\sqrt{5x-1}\right)^2\)

\(\Leftrightarrow x-1=\left(3x-2\right)+\left(5x-1\right)+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)

\(\Leftrightarrow x-1=8x-3+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)

\(\Leftrightarrow2-7x=2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)

Bình phương 2 vế của pt ta có:

\(\left(2-7x\right)^2=\left[2\sqrt{\left(3x-2\right)\left(5x-1\right)}\right]^2\)

\(\Leftrightarrow49x^2-28x+4=60x^2-52x+8\)

\(\Leftrightarrow-11x^2+24x-4=0\)

\(\Leftrightarrow\left(2-x\right)\left(11x-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{2}{11}\end{array}\right.\) (Loại)

Vậy pt vô nghiệm

 

 

 

5 tháng 7 2019

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\) \(+,x\ge2\Rightarrow\left\{{}\begin{matrix}x-2\ge0\\x-1\ge1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-2\right|=x-2\\\left|x-1\right|=x-1\end{matrix}\right.\Rightarrow\left|x-2\right|+\left|x-1\right|=x-2+x-1=3\Leftrightarrow2x-3=3\Leftrightarrow x=3\left(\text{t/m}\right)\) \(+,1\le x< 2\Rightarrow\left\{{}\begin{matrix}x-1\ge0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=x-1\\\left|x-2\right|=-\left(x-2\right)=2-x\end{matrix}\right.\Rightarrow\left|x-1\right|+\left|x-2\right|=x-1+2-x=1\left(l\right)\) \(+,x< 1\Rightarrow\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=-\left(x-1\right)=1-x\\\left|x-2\right|=-\left(x-2\right)=2-x\end{matrix}\right.\Rightarrow\left|x-1\right|+\left|x-2\right|=1-x+2-x=3\Leftrightarrow3-2x=3\Leftrightarrow x=0\left(\text{t/m}\right)\) \(f,\left\{{}\begin{matrix}\sqrt{x^2-9}\ge0\\\sqrt{x^2-6x+9}\ge0\end{matrix}\right.mà:\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2-9}=0\\\sqrt{x^2-6x+9}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-9=0\\\sqrt{\left(x-3\right)^2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-9=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow x=3\)\thay vào ta thấy thoa man => x=3

5 tháng 7 2019

\(ĐK:x\ge4\)\(\sqrt{x^2+x-20}=\sqrt{x^2+5x-4x-20}=\sqrt{x\left(x+5\right)-4\left(x+5\right)}=\sqrt{\left(x-4\right)\left(x+5\right)}=\sqrt{x-4}.\sqrt{x+5}=\sqrt{x-4}\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-4}=0\\\sqrt{x+5}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x+5=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=-4\left(l\right)\end{matrix}\right.\Rightarrow x=4\) \(b,ĐK:x\le2;\sqrt{x+1}+\sqrt{2-x}=\sqrt{6}\Leftrightarrow x+1+2-x+2\sqrt{\left(x+1\right)\left(2-x\right)}=6\Leftrightarrow3+2\sqrt{\left(x+1\right)\left(2-x\right)}=6\Leftrightarrow2\sqrt{\left(x+1\right)\left(2-x\right)}=3\Leftrightarrow\sqrt{\left(x-1\right)\left(2-x\right)}=1,5\Leftrightarrow\left(x-1\right)\left(2-x\right)=\frac{9}{4}\Leftrightarrow\left(x-1\right)\left(x-2\right)=-\frac{9}{4}\Leftrightarrow x^2-3x+2=-\frac{9}{4}\Leftrightarrow x^2-3x+\frac{9}{4}=-2\Leftrightarrow\left(x-\frac{3}{2}\right)^2=-2\Rightarrow vonghiem\)