Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C = 49\dfrac{8}{23} - (5\dfrac{7}{32} + 14\dfrac{8}{23} )\)
\(C = 49\dfrac{8}{23} - 5\dfrac{7}{32} - 14\dfrac{8}{23}\)
\(C =( 49\dfrac{8}{23} - 4\dfrac{8}{23}) - 5\dfrac{7}{32}\)
\(C = 45 - 5\dfrac{7}{32}\)
\(C = \dfrac{1273}{32}\)
1.Tính hợp lý:
a. 1152 - (374 + 1152) + (374 - 65) = 1152 - 374 - 1152 + 374 - 65 = ( 1152 - 1152 ) + ( -65) + ( 374 - 374 ) = 0 + ( - 65) + 0 = -65
Bài 1 : Tính hợp lý : c. \(\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\) = \(\dfrac{11.3^{29}-3^{30}}{2^2.3^{28}}\) = \(\dfrac{3^{29}.\left(11-3\right)}{2^2.3^{28}}\) = \(\dfrac{3^{29}.2^3}{2^2.3^{28}}\) = 6
b) Ta có : \(\left(x-\frac{1}{3}\right)^2-\frac{1}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{3}\right)^2=\frac{1}{4}\)
\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{3}\right)^2=\left(\frac{1}{2}\right)^2\\\left(x-\frac{1}{3}\right)^2=\left(-\frac{1}{2}\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{1}{2}\\x-\frac{1}{3}=-\frac{1}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{6}\\x=-\frac{1}{6}\end{cases}}\)
b) \(\left(x-\frac{1}{3}\right)^2-\frac{1}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{3}\right)^2=\frac{1}{4}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{1}{4}\\x-\frac{1}{3}=-\frac{1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{12}\\x=\frac{1}{12}\end{cases}}\)
d) \(\frac{x+5}{2}=\frac{8}{x+5}\)
\(\Rightarrow\left(x+5\right)^2=16\)
\(\Rightarrow\orbr{\begin{cases}x+5=16\\x+5=-16\end{cases}\Rightarrow\orbr{\begin{cases}x=11\\x=-21\end{cases}}}\)
\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)
= \(\dfrac{2}{2}.\left(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)
=\(\dfrac{3}{2}.\dfrac{56}{305}\)
= \(\dfrac{78}{305}\)
\(\left(x^2-4\right)\left(6-2x\right)=0\) ⇔ \(x^2-4=0\) hoặc \(6-2x=0\)
*Nếu \(x^2-4=0\)
⇒ x2 = 4
⇒ x ∈ {2 ; -2}
*Nếu \(6-2x=0\)
⇒2x = 6
⇒ x = 6 : 2 = 3
Vậy x ∈ { -2 ; 2 ; 3 }
a)
\(x+\left(x-1\right)+\left(x-2\right)+...+\left(x-50\right)=255\\ x+x-1+x-2+...+x-50=255\\ \left(x+x+x+...+x\right)-\left(1+2+3+...+50\right)\\ 51x-1275=255\\ 51x=1530\\ x=30\)
e)
\(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+30\right)=1240\\ x+x+1+x+2+...+x+30=1240\\ \left(x+x+x+...+x\right)+\left(1+2+3+...+30\right)=1240\\ 31x+465=1240\\ 31x=775\\ x=25\)
f)
\(\left(x-1\right)+\left(x-2\right)+...+\left(x-19\right)+\left(x-20\right)=-610\\ x-1+x-2+...+x-19+x-20=-610\\ \left(x+x+x+...+x\right)-\left(1+2+3+...+20\right)=-610\\ 20x-210=-610\\ 20x=-400\\ x=-20\)
Bài 1:
a) \(\left(\dfrac{3}{8}+\dfrac{-3}{4}+\dfrac{7}{12}\right):\dfrac{5}{6}+\dfrac{1}{2}\)
\(=\left(\dfrac{9}{24}+\dfrac{-18}{24}+\dfrac{14}{24}\right):\dfrac{5}{6}+\dfrac{1}{2}\)
\(=\dfrac{5}{24}:\dfrac{5}{6}+\dfrac{1}{2}\)
\(=\dfrac{5}{24}.\dfrac{6}{5}+\dfrac{1}{2}\)
\(=\dfrac{1}{4}+\dfrac{1}{2}\)
\(=\dfrac{1}{4}+\dfrac{2}{4}\)
\(=\dfrac{3}{4}\)
b) \(\dfrac{1}{2}+\dfrac{3}{4}-\left(\dfrac{3}{4}-\dfrac{4}{5}\right)\)
\(=\dfrac{1}{2}+\dfrac{3}{4}-\dfrac{3}{4}+\dfrac{4}{5}\)
\(=\left(\dfrac{1}{2}+\dfrac{4}{5}\right)+\left(\dfrac{3}{4}-\dfrac{3}{4}\right)\)
\(=\dfrac{1}{2}+\dfrac{4}{5}\)
\(=\dfrac{5}{10}+\dfrac{8}{10}\)
\(=\dfrac{9}{5}\)
c) \(6\dfrac{5}{12}:2\dfrac{3}{4}+11\dfrac{1}{4}.\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)
\(=\dfrac{77}{12}:\dfrac{11}{4}+\dfrac{42}{4}.\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)
\(=\dfrac{77}{12}.\dfrac{4}{11}+\dfrac{42}{4}.\left(\dfrac{5}{15}+\dfrac{3}{15}\right)\)
\(=\dfrac{7}{3}+\dfrac{42}{4}.\dfrac{8}{15}\)
\(=\dfrac{7}{3}+\dfrac{14.2}{1.3}\)
\(=\dfrac{7}{3}+\dfrac{28}{3}\)
\(=\dfrac{35}{3}\)
d) \(\left(\dfrac{7}{8}-\dfrac{3}{4}\right).1\dfrac{1}{3}-\dfrac{2}{7}.\left(3,5\right)^2\)
\(=\left(\dfrac{7}{8}-\dfrac{6}{8}\right).\dfrac{4}{3}-\dfrac{2}{7}.12\dfrac{1}{4}\)
\(=\dfrac{1}{8}.\dfrac{4}{3}-\dfrac{2}{7}.\dfrac{49}{4}\)
\(=\dfrac{1}{6}-\dfrac{7}{2}\)
\(=\dfrac{1}{6}-\dfrac{21}{6}\)
\(=\dfrac{-10}{3}\)
e) \(\left(\dfrac{3}{5}+0,415-\dfrac{3}{200}\right).2\dfrac{2}{3}.0,25\)
\(=\left(\dfrac{3}{5}+\dfrac{83}{200}-\dfrac{3}{200}\right).\dfrac{8}{3}.\dfrac{1}{4}\)
\(=\left(\dfrac{120}{200}+\dfrac{83}{200}-\dfrac{3}{200}\right).\dfrac{8}{3}.\dfrac{1}{4}\)
\(=1.\dfrac{8}{3}.\dfrac{1}{4}\)
\(=\dfrac{2}{3}\)
f) \(\dfrac{5}{16}:0,125-\left(2\dfrac{1}{4}-0,6\right).\dfrac{10}{11}\)
\(=\dfrac{5}{16}:\dfrac{1}{8}-\left(\dfrac{9}{4}-\dfrac{3}{5}\right).\dfrac{10}{11}\)
\(=\dfrac{5}{16}.\dfrac{8}{1}-\left(\dfrac{45}{20}-\dfrac{12}{20}\right).\dfrac{10}{11}\)
\(=\dfrac{5}{2}-\dfrac{33}{20}.\dfrac{10}{11}\)
\(=\dfrac{5}{2}-\dfrac{3}{2}\)
\(=\dfrac{2}{2}=1\)
g) \(0,25:\left(10,3-9,8\right)-\dfrac{3}{4}\)
\(=\dfrac{1}{4}:\dfrac{1}{2}-\dfrac{3}{4}\)
\(=\dfrac{1}{4}.\dfrac{2}{1}-\dfrac{3}{4}\)
\(=\dfrac{1}{2}-\dfrac{3}{4}\)
\(=\dfrac{2}{4}-\dfrac{3}{4}\)
\(=\dfrac{-1}{4}\)
h) \(1\dfrac{13}{15}.0,75-\left(\dfrac{11}{20}+20\%\right):\dfrac{7}{3}\)
\(=\dfrac{28}{15}.\dfrac{3}{4}-\left(\dfrac{11}{20}+\dfrac{1}{5}\right):\dfrac{7}{3}\)
\(=\dfrac{7}{5}-\left(\dfrac{11}{20}+\dfrac{4}{20}\right):\dfrac{7}{3}\)
\(=\dfrac{7}{5}-\dfrac{3}{4}:\dfrac{7}{3}\)
\(=\dfrac{7}{5}-\dfrac{9}{28}\)
\(=\dfrac{196}{140}-\dfrac{45}{140}\)
\(=\dfrac{151}{140}\)
i) \(\dfrac{\left(\dfrac{1}{2-0,75}\right).\left(0,2-\dfrac{2}{5}\right)}{\dfrac{5}{9}-1\dfrac{1}{12}}\)
\(=\dfrac{\left(\dfrac{1}{1,25}\right).\left(\dfrac{1}{5}-\dfrac{2}{5}\right)}{\dfrac{5}{9}-\dfrac{13}{12}}\)
\(=\dfrac{\dfrac{1}{1,25}.\dfrac{-1}{5}}{\dfrac{20}{36}-\dfrac{39}{36}}\)
\(=\dfrac{\dfrac{-1}{6,25}}{\dfrac{-19}{36}}\)
k) \(\dfrac{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{1}{14}}{-1-\dfrac{3}{7}+\dfrac{3}{28}}\)
\(=\dfrac{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{28}}{-\dfrac{3}{3}-\dfrac{3}{7}+\dfrac{3}{28}}\)
\(=\dfrac{2\left(\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{28}\right)}{\left(-3\right)\left(\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{28}\right)}\)
\(=-\dfrac{2}{3}\)
\(A=0,7.2\dfrac{2}{3}.20.0,375.\dfrac{5}{28}\)
\(A=\dfrac{7}{10}.\dfrac{8}{3}.20.\dfrac{3}{8}.\dfrac{5}{28}\)
\(A=\left(\dfrac{7}{10}.\dfrac{5}{28}\right).\left(\dfrac{8}{3}.\dfrac{3}{8}\right).20\)
\(A=\dfrac{1}{8}.1.20\)
\(A=\dfrac{20}{8}=\dfrac{5}{2}\)
\(B=\left(9\dfrac{30303}{80808}+7\dfrac{303030}{484848}\right)+4,03\)
\(B=\left(9\dfrac{3}{8}+7\dfrac{5}{8}\right)+4,03\)
\(B=\left[\left(9+7\right)+\left(\dfrac{3}{8}+\dfrac{5}{8}\right)\right]+4,03\)
\(B=\left(16+1\right)+4,03\)
\(B=17+4,03\)
\(B=21,03\)
\(C=\left(9,75.21\dfrac{3}{7}+\dfrac{39}{4}.18\dfrac{4}{7}\right).\dfrac{15}{78}\)
\(C=\left(\dfrac{39}{4}.\dfrac{150}{7}+\dfrac{39}{4}.\dfrac{130}{7}\right).\dfrac{15}{78}\)
\(C=\dfrac{39}{4}.\left(\dfrac{150}{7}+\dfrac{130}{7}\right).\dfrac{15}{78}\)
\(C=\dfrac{39}{4}.40.\dfrac{15}{78}\)
\(C=390.\dfrac{15}{78}\)
\(C=75\)
a) (1/7.x-2/7).(-1/5.x-2/5)=0
=> 1/7.x-2/7=0hoặc-1/5.x-2/5=0
*1/7.x-2/7=0
1/7.x=0+2/7
1/7.x=2/7
x=2/7:1/7
x=2
b)1/6.x+1/10.x-4/5.x+1=0
(1/6+1/10-4/5).x+1=0
(1/6+1/10-4/5).x=0-1
(1/6+1/10-4/5).x=-1
(-8/15).x=-1
x=-1:(-8/15) =15/8
Lời giải:
a.
$32^{10}=(2^5)^{10}=2^{50}$
$8^{16}=(2^3)^{16}=2^{3.16}=2^{48}$
Vì $2^{50}> 2^{48}$ nên $32^{10}> 8^{16}$
b.
\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{x(x+1)}=\frac{-19}{20}\)
\(\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{x+1-x}{x(x+1)}=\frac{-19}{20}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{-19}{20}\)
\(1-\frac{1}{x+1}=\frac{-19}{20}\)
\(\frac{x}{x+1}=\frac{-19}{20}\)
Khả năng $\frac{-19}{20}$ là $\frac{19}{20}$. Khi đó $x=19$.