K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Từ đồ thị ta thấy \({x^2} + 2x + 1 \ge 0\forall x\)

Và \({x^2} + 2x + 1 > 0\forall x \in \mathbb{R}\backslash \left\{ { - 1} \right\}\)

b) Từ đồ thị ta thấy \( - {x^2} + 4x - 4 \le 0\forall x\)

Và \( - {x^2} + 4x - 4 < 0\forall x \in \mathbb{R}\backslash \left\{ { - 2} \right\}\)

c) Nếu \(\Delta  = 0\) thì \(f\left( x \right)\) cùng dấu với dấu của hệ số a, với mọi \(x \in \mathbb{R}\backslash \left\{ {\frac{{ - b}}{{2a}}} \right\}\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta thấy đồ thị nằm trên trục hoành nên \(f\left( x \right) = {x^2} - 2x + 2 > 0\).

b) Ta thấy đồ thị nằm dưới trục hoành nên \(f\left( x \right) =  - {x^2} + 4x - 5 < 0\).

c) Ta thấy \(f\left( x \right) = {x^2} - 2x + 2\) có hệ số a=1>0 và \(f\left( x \right) = {x^2} - 2x + 2 > 0\)

\(f\left( x \right) =  - {x^2} + 4x - 5\) có hệ số a=-1

Như thế, khi \(\Delta  < 0\) thì tam thức bậc hai \(f\left( x \right) = a{x^2} + bx + c\left( {a \ne 0} \right)\) cùng dấu với hệ số a.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta thấy trên \(\left( { - \infty ; - 2} \right)\): Đồ thị nằm trên trục hoành

=> \(f\left( x \right) = {x^2} + 3x + 2 > 0\)\(\forall x \in \left( { - \infty ; - 2} \right)\)

Trên \(\left( { - 2; - 1} \right)\): Đồ thị nằm dưới trục hoành

=> \(f\left( x \right) = {x^2} + 3x + 2 < 0\)\(\forall x \in \left( { - 2; - 1} \right)\)

Trên \(\left( { - 1; + \infty } \right)\): Đồ thị nằm trên trục hoành

=> \(f\left( x \right) = {x^2} + 3x + 2 > 0\)\(\forall x \in \left( { - 1; + \infty } \right)\)

b)

Trên \(\left( { - \infty ;1} \right)\): Đồ thị nằm dưới trục hoành

=> \(f\left( x \right) =  - {x^2} + 4x - 3 < 0\)\(\forall x \in \left( { - \infty ;1} \right)\)

Trên \(\left( {1;3} \right)\): Đồ thị nằm trên trục hoành

=> \(f\left( x \right) =  - {x^2} + 4x - 3 > 0\)\(\forall x \in \left( {1;3} \right)\)

Trên \(\left( {3; + \infty } \right)\): Đồ thị nằm dưới trục hoành

=> \(f\left( x \right) =  - {x^2} + 4x - 3 < 0\)\(\forall x \in \left( {3; + \infty } \right)\)

c) Nếu \(\Delta  > 0\) thì \(f\left( x \right)\) cùng dấu vưới hệ số a với mọi x thuộc các khoảng \(\left( { - \infty ;{x_1}} \right)\) và \(\left( {{x_2}; + \infty } \right)\); \(f\left( x \right)\) trái dấu với hệ số a với mọi x thuộc khoảng \(\left( {{x_1};{x_2}} \right)\), trong đó \({x_1},{x_2}\) là hai nghiệm của \(f\left( x \right)\) và \({x_1} < {x_2}\).

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Dựa vào đồ thị ta thấy hàm số đã cho vô nghiệm

          Biệt thức \(\Delta  = {2^2} - 4.\left( { - 1} \right).\left( { - 2} \right) =  - 4 < 0\)

          Ta thấy hệ số của \({x^2}\) là \( - 1 < 0\)

          Đồ thị nằm dưới trục hoành với mọi x

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) với \(\forall x \in \mathbb{R}\)

b) Dựa vào đồ thị ta thấy hàm số đã cho có nghiệm kép \({x_1} = {x_2} = 1\)

Biệt thức \(\Delta  = {2^2} - 4.\left( { - 1} \right).\left( { - 1} \right) = 0\)

          Ta thấy hệ số của \({x^2}\) là \( - 1 < 0\)

          Đồ thị nằm dưới trục hoành với mọi x

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) với \(\forall x \in \mathbb{R}\)

c) Dựa vào đồ thị ta thấy hàm số đã cho có hai nghiệm phân biệt  \({x_1} =  - 1;{x_2} = 3\)

Biệt thức \(\Delta  = {2^2} - 4.\left( { - 1} \right).3 = 16 > 0\)

          Ta thấy hệ số của \({x^2}\) là \( - 1 < 0\)

Đồ thị nằm dưới trục hoành khi  \(x \in \left( { - \infty , - 1} \right) \cup \left( {3, + \infty } \right)\)

Đồ thị nằm trên trục hoành với mọi \(x \in \left( { - 1,3} \right)\)

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) khi \(x \in \left( { - \infty , - 1} \right) \cup \left( {3, + \infty } \right)\)

d) Dựa vào đồ thị ta thấy hàm số bậc hai đã cho vô nghiệm

Biệt thức \(\Delta  = {6^2} - 4.1.10 =  - 4 < 0\)

          Ta thấy hệ số của \({x^2}\) là \(1 > 0\)

Đồ thị nằm trên trục hoành với mọi \(x\)

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) với mọi \(x \in \mathbb{R}\)

e) Dựa vào đồ thị ta thấy hàm số đã cho có nghiệm kép \({x_1} = {x_2} =  - 3\)

Biệt thức \(\Delta  = {6^2} - 4.1.9 = 0\)

          Ta thấy hệ số của \({x^2}\) là \(1 > 0\)

          Đồ thị nằm trên trục hoành với mọi x

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) với mọi \(x \in \mathbb{R}\)

g) ) Dựa vào đồ thị ta thấy hàm số đã cho có hai nghiệm phân biệt  \({x_1} =  - 4;{x_2} =  - 2\)

Biệt thức \(\Delta  = {6^2} - 4.1.8 = 4 > 0\)

          Ta thấy hệ số của \({x^2}\) là \(1 > 0\)

Đồ thị nằm trên trục hoành khi  \(x \in \left( { - \infty , - 4} \right) \cup \left( { - 2, + \infty } \right)\)

Đồ thị nằm dưới trục hoành với mọi \(x \in \left( { - 4, - 2} \right)\)

Nên \(f\left( x \right)\) cùng dấu với hệ số của \({x^2}\) khi \(x \in \left( { - \infty , - 4} \right) \cup \left( { - 2, + \infty } \right)\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Biểu thức \(f\left( x \right) = 2{x^2} + x - 1\) là một tam thức bậc hai

          \(f\left( 1 \right) = {2.1^2} + 1 - 1 = 2 > 0\) nên \(f\left( x \right)\) dương tại \(x = 1\)

b) Biểu thức \(g\left( x \right) =  - {x^4} + 2{x^2} + 1\) không phải là một tam thức bậc hai

c) Biểu thức \(h\left( x \right) =  - {x^2} + \sqrt 2 .x - 3\) là một tam thức bậc hai

          \(h\left( 1 \right) =  - {1^2} + \sqrt 2 .1 - 3 = \sqrt 2  - 4 < 0\) nên \(h\left( x \right)\) âm tại \(x = 1\)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta có \(a = 3 > 0,b =  - 4,c = 1\)

\(\Delta ' = {\left( { - 2} \right)^2} - 3.1 = 1 > 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 2 nghiệm \(x = \frac{1}{3},x = 1\). Khi đó:

\(f\left( x \right) > 0\) với mọi x thuộc các khoảng \(\left( { - \infty ;\frac{1}{3}} \right)\) và \(\left( {1; + \infty } \right)\);

\(f\left( x \right) < 0\) với mọi x thuộc các khoảng \(\left( {\frac{1}{3};1} \right)\)

b) Ta có \(a = 9 > 0,b = 6,c = 1\)

\(\Delta ' = 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 1 nghiệm \(x =  - \frac{1}{3}\). Khi đó:

\(f\left( x \right) > 0\) với mọi \(x \in \mathbb{R}\backslash \left\{ { - \frac{1}{3}} \right\}\)

c) Ta có \(a = 2 > 0,b =  - 3,c = 10\)

\(\Delta  = {\left( { - 3} \right)^2} - 4.2.10 =  - 71 < 0\)

\( \Rightarrow \)\(f\left( x \right) > 0\forall x \in \mathbb{R}\)

d) Ta có \(a =  - 5 < 0,b = 2,c = 3\)

\(\Delta ' = {1^2} - \left( { - 5} \right).3 = 16 > 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 2 nghiệm \(x = \frac{{ - 3}}{5},x = 1\). Khi đó:

\(f\left( x \right) < 0\) với mọi x thuộc các khoảng \(\left( { - \infty ; - \frac{3}{5}} \right)\) và \(\left( {1; + \infty } \right)\);

\(f\left( x \right) > 0\) với mọi x thuộc các khoảng \(\left( { - \frac{3}{5};1} \right)\)

e) Ta có \(a =  - 4 < 0,b = 8c =  - 4\)

\(\Delta ' = 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 1 nghiệm \(x = 1\). Khi đó:

\(f\left( x \right) < 0\) với mọi \(x \in \mathbb{R}\backslash \left\{ 1 \right\}\)

g) Ta có \(a =  - 3 < 0,b = 3,c =  - 1\)

\(\Delta  = {3^2} - 4.\left( { - 3} \right).\left( { - 1} \right) =  - 3 < 0\)

\( \Rightarrow \)\(f\left( x \right) < 0\forall x \in \mathbb{R}\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) \(f\left( x \right) = 2{x^2} + 4x + 2\) có \(\Delta  = 0\), có nghiệm kép là \({x_1} = {x_2} =  - 1\)

và \(a = 2 > 0\)

Ta có bảng xét dấu như sau:

 

Vậy \(f\left( x \right)\) dương với mọi \(x \ne  - 1\)

b) \(f\left( x \right) =  - 3{x^2} + 2x + 21\) có \(\Delta  = 256 > 0\), hai nghiệm phân biệt là \({x_1} =  - \frac{7}{3};{x_2} = 3\)

và \(a =  - 3 < 0\)

Ta có bảng xét dấu như sau:

 

Vậy \(f\left( x \right)\) dương với \(x \in \left( { - \frac{7}{3};3} \right)\) và âm khi \(x \in \left( { - \infty ; - \frac{7}{3}} \right) \cup \left( {3; + \infty } \right)\)

c) \(f\left( x \right) =  - 2{x^2} + x - 2\) có \(\Delta  =  - 15 < 0\), tam thức vô nghiệm

và \(a =  - 2 < 0\)

Ta có bảng xét dấu như sau:

 

Vậy \(f\left( x \right)\) âm với mọi \(x \in \mathbb{R}\)

d) \(f\left( x \right) =  - 4x\left( {x + 3} \right) - 9 =  - 4{x^2} - 12x - 9\) có \(\Delta  = 0\), tam thức có nghiệm kép \({x_1} = {x_2} =  - \frac{3}{2}\) và \(a =  - 4 < 0\)

Ta có bảng xét dấu như sau

 

Vậy \(f\left( x \right)\) âm với mọi \(x \ne  - \frac{3}{2}\)

e) \(f\left( x \right) = \left( {2x + 5} \right)\left( {x - 3} \right) = 2{x^2} - x - 15\) có \(\Delta  = 121 > 0\), có hai nghiệm phân biệt \({x_1} =  - \frac{5}{2};{x_2} = 3\) và có \(a = 2 > 0\)

Ta có bảng xét dấu như sau

 

Vậy \(f\left( x \right)\) âm với \(x \in \left( { - \frac{5}{2};3} \right)\) và dương khi \(x \in \left( { - \infty ; - \frac{5}{2}} \right) \cup \left( {3; + \infty } \right)\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Hệ số a là: a=1

\(f(0) = {0^2} - 4.0 + 3 = 3\)

\(f(1) = {1^2} - 4.1 + 3 = 0\)

\(f(2) = {2^2} - 4.2 + 3 =  - 1\)

\(f(3) = {3^2} - 4.3 + 3 = 0\)

\(f(4) = {4^2} - 4.4 + 3 = 3\)

=> f(0); f(4) cùng dấu với hệ số a; f(2) khác dấu với hệ số a

b) Nhìn vào đồ thị ta thấy

- Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành

- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành

- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành

c) - Trên khoảng \(\left( { - \infty ;1} \right)\) đồ thị nằm phía trên trục hoành => f(x)>0, cùng dầu với hệ số a

- Trên khoảng \(\left( {1;3} \right)\), đồ thị nằm phía dưới trục hoành => f(x) <0, khác dấu với hệ số a

- Trên khoảng \(\left( {3; + \infty } \right)\), đồ thị nằm phía trên trục hoành => f(x)>0, cùng dấu với hệ số a

23 tháng 9 2023

Tham khảo:

a) \(f\left( x \right) =  - 3{x^2} + 4x - 1\)

\(a =  - 3 < 0\), \(\Delta  = {4^2} - 4.\left( { - 3} \right).\left( { - 1} \right) = 4 > 0\)

=> \(f\left( x \right)\) có 2 nghiệm \(x = \frac{1}{3},x = 1\)

Bảng xét dấu:

b) \(f\left( x \right) = {x^2} - x - 12\)

\(a = 1 > 0\), \(\Delta  = {\left( { - 1} \right)^2} - 4.1.\left( { - 12} \right) = 49 > 0\)

=> \(f\left( x \right)\) có 2 nghiệm \(x =  - 3,x = 4\)

Bảng xét dấu:

c) \(f\left( x \right) = 16{x^2} + 24x + 9\)

\(a = 16 > 0\), \(\Delta ' = {12^2} - 16.9 = 0\)

=> \(f\left( x \right)\) có nghiệm duy nhất \(x =  - \frac{3}{4}\)

Bảng xét dấu: