Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL:
a)Để P+2;P+6; P+8 là số nguyên tố thì \(P=5\)
hc tốt
tớ chỉ biết làm phần d thôi
Vì p là số nguyên tố nên \(\Rightarrow\) p có dạng 3k,3k+1,3k+2
+) Nếu p =3k \(\Rightarrow\)p =3 thì p+2=3+2=5
p+4=3+4=7 là số nguyên tố (chọn)
+) Nếu p=3k+1 \(\Rightarrow\) p+2 =(3k+3) \(⋮\)3 là hợp số (loại)
+) Nếu p=3k+2 \(\Rightarrow\)p+4=(3k+6)\(⋮\)3 là hợp số (loại)
Vậy số cần tìm là 3
Chỉ cần 1 cách của nhuyễn thanh tùng có thể giải quyết cả 4 câu nên 3 câu còn lại e tự làm tiếp nhé
Vì p là số nguyên tố nên p thuộc { 2,3,5,7 ... }
Nếu p = 2 thì p + 94 và p + 1994 là số chẵn ( loại )
Nếu p = 3 thì p + 94 = 97 ,p+1994 = 1997 là hai số nguyên tố ( thỏa mãn )
Nếu p > 3 thì p không chia hết cho 3 => p : 3 dư 1 hoặc 2
Nếu p : 3 dư 1 thì p = 3k + 1
Khi đó p + 1994 = 3k + 1 + 1994
= 3k + 1995
= 3 x ( k + 665 ) là số chia hết cho 3, là hợp số ( loại )
Nếu p : 3 dư 2 thì p = 3q + 2
Khi đó p + 94 = 3q + 2 + 94
= 3q + 96
= 3x ( q + 32 ) là số chia hết cho 3 , là hợp số ( loại )
Vậy p = 2
ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc
a, Nếu p = 3k (k \(\in\) N ) và p là số nguyên tố
=> k = 1 => p = 3
=> p + 10 = 3 + 10 = 13 (Thỏa mãn là số nguyên tố)
=> p + 14 = 3 + 14 = 17 (Thỏa mãn là số nguyên tố)
Nếu p = 3k + 1
=> p + 14 = 3k + 1 + 14 =3k + 15 = 3(k + 5) chia hết cho 3 (loại)
Nếu p = 3k + 2
=> p + 10 = 3k + 2 + 10 = 3k + 12 = 3(k + 4) chia hết cho 3 (loại)
Vậy p = 3 thì p + 10 và p + 14 đều là số nguyên tố
b, Nếu p = 3k
=> p + 6 = 3k + 6 = 3(k + 2) chia hết cho 3 (loại)
Nếu p = 3k + 1
=> p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k +1) chia hết cho 3 ( loại )
Nếu p = 3k + 2
=> k = 1 => p = 5
=> p + 2 = 5 + 2 = 7 (TM)
=> p + 6 = 5 + 6 = 11 (TM)
=> p + 8 = 5 + 8 = 13 (TM)
Vậy p = 5 thì p + 2; p + 6 và p + 8 đều là số nguyên tố
A ) trước hết cần chú ý rằng mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên)
+) nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1)
+) nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (2)
+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3)
từ (1), (2), (3) suy ra p=3 là giá trị cần tìm.
mK mới làm đc câu a thui !bạn thông cảm