Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cô - si với n số dương ta được
\(a_1+a_2+...+a_n\ge n\sqrt[n]{a_1.a_2....a_n}\)
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\ge n\sqrt[n]{\frac{1}{a_1}.\frac{1}{a_2}....\frac{1}{a_n}}\)
Suy ra \(\left(a_1+a_2+...+a_n\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\right)\ge n^2.\sqrt[n]{1}=n^2\)
(dấu "=" xẩy ra <=> a1=a2 =...=an)
Theo bat dang thuc cauchy ta co
a1+a2+...+an lon hon hoc bang n.can bac n cua (a1.a2....an) (1)
1/a1+1/a2...1/an lon hon hoac bang n.1/can bac n cua (a1.a2...an) (2)
Nhan 2 ve (1) va (2) ta duoc
(a1+a2+...+an).(1/a1+1/a2+...1/an) lon hon hoac bang n tren 2
=>1/a1+1/a2+...1/an lon hon hoac bang n tren 2/a1+a2+...+an
Dau bang xay ra khi a1=a2=...=an
Mk giai co hieu ko
ÁP DỤNG BĐT Cauchy ta có :
\(\text{a}_1+\text{a}_2+...+\text{a}_n\ge n^n\sqrt{\text{a}_1.\text{a}_2....\text{a}_n}\) (1)
\(\frac{1}{\text{a}_1}+\frac{1}{\text{a}_2}+...+\frac{1}{\text{a}_n}\ge n^n\sqrt{\frac{1}{\text{a}_1}\cdot\frac{1}{\text{a}_2}\cdot...\cdot\frac{1}{\text{a}_n}}\)(2)
Nhân (1) và (2) vế với vế tương ứng ta có được BĐT (*)
Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}\text{a}_1=\text{a}_2=...=\text{a}_n\\\frac{1}{\text{a}_1}=\frac{1}{\text{a}_2}=...=\frac{1}{\text{a}_n}\end{cases}}\)
\(\Leftrightarrow\text{a}_1=\text{a}_2=...=\text{a}_n\)
Ta có:
\(1-a_1\ge a_2+a_3+...+a_n\ge\left(n-1\right)\sqrt[n-1]{a_2a_3...a_n}\)
\(1-a_2\ge a_1+a_3+...+a_n\ge\left(n-1\right)\sqrt[n-1]{a_1a_3...a_n}\)
....
\(1-a_n\ge a_1+a_2+...+a_{n-1}\ge\left(n-1\right)\sqrt[n-1]{a_1a_2...a_{n-1}}\)
Nhân vế với vế:
\(\left(1-a_1\right)\left(1-a_2\right)...\left(1-a_n\right)\ge\left(n-1\right)^n.a_1a_2...a_n\)
\(\Leftrightarrow\frac{a_1a_2...a_n}{\left(1-a_1\right)\left(1-a_2\right)...\left(1-a_n\right)}\le\frac{1}{\left(n-1\right)^n}\)
Dấu "=" xảy ra khi \(a_1=a_2=...=a_n=\frac{1}{n}\)
ĐKXĐ: ...
Đặt \(\left(\sqrt{x-2018};\sqrt{y-2019};\sqrt{z-2020}\right)=\left(a;b;c\right)\) \(\Rightarrow a;b;c>0\)
\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4a-4}{a^2}+\frac{4b-4}{b^2}+\frac{4c-4}{c^2}=3\)
\(\Leftrightarrow1-\frac{4a-a}{a^2}+1-\frac{4b-4}{b^2}+1-\frac{4c-4}{c^2}=0\)
\(\Leftrightarrow\frac{a^2-4a+4}{a^2}+\frac{b^2-4b+4}{b^2}+\frac{c^2-4c+4}{c^2}=0\)
\(\Leftrightarrow\left(\frac{a-2}{a}\right)^2+\left(\frac{b-2}{b}\right)^2+\left(\frac{c-2}{c}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-2=0\\b-2=0\\c-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x-2018}=2\\\sqrt{y-2019}=2\\\sqrt{z-2020}=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2022\\y=2023\\z=2024\end{matrix}\right.\)
\(2x^2+4x+2=21-3y^2\)
\(\Leftrightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\)
Do \(\left(x+1\right)^2\ge0\Rightarrow7-y^2\ge0\) \(\Rightarrow y^2\le7\) (1)
Mà \(2\left(x+1\right)^2\) là một số tự nhiên chẵn và 3 là số lẻ
\(\Rightarrow7-y^2\) là một số chẵn \(\Rightarrow y^2\) là một số lẻ (2)
Từ (1); (2) \(\Rightarrow y^2\) là số chính phương lẻ và nhỏ hơn 7
\(\Rightarrow y^2=1\Rightarrow y=\pm1\)
\(\Rightarrow2\left(x+1\right)^2=3\left(7-1\right)=18\)
\(\Rightarrow\left(x+1\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
\(a_n=\frac{1+\left(\frac{n}{n+2}\right)^n}{1-\left(\frac{n}{n+2}\right)^n}\)
\(a_n=\frac{\left(\frac{n}{n+2}\right)^2-\left(-1\right)}{\left(1-\frac{n}{n+2}\right)\left(1+\frac{n}{n+2}\right)}\)
\(a_n=\frac{\left(\frac{n}{n+2}-1\right)\left(\frac{n}{n+2}+1\right)}{\left(1-\frac{n}{n+2}\right)\left(1+\frac{n}{n+2}\right)}\)
\(a_n=\frac{\left(\frac{n}{n+2}-1\right)}{\left(1-\frac{n}{n+2}\right)}\)
\(a_n=\frac{-\left(1-\frac{n}{n+2}\right)}{\left(1-\frac{n}{n+2}\right)}\)
\(a_n=1\)
\(\Rightarrow\hept{\begin{cases}a=1\\n=1\end{cases}}\)
vậy \(\hept{\begin{cases}a=1\\n=1\end{cases}}\)