K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
25 tháng 8 2023

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCDa) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)Câu 2:Cho hình chóp S.ABCD có đáy...
Đọc tiếp

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD

a) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)

b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)

c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)

d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)

Câu 2:

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành, d cắt đoạn BC tại E. Gọi C' là một điểm nằm trên cạnh SC

a) Tìm giao điểm M của CD và mặt phẳng (C'AE)

b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C'AE)

Câu 3:

Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD trên cạnh AD lấy điểm P không trùng với trung điểm của AD

a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD)

b) Tìm giao điểm của mặt phẳng (PMN) và BC

Câu 4:

Cho bốn điểm A, B, C và D không đồng phẳng. Gọi I,K lần lượt là trung điểm của hai đoạn thẳng AD và BC

a) Tìm giao tuyến của hai mặt phẳng  (IBC) và  (KAD)

b) Gọi M và N là hai điểm lần lượt lấy trên hai đoạn thẳng AB và AC. Tìm giao tuyến của hai mặt phẳng (IBC) và (DMN)

Câu 5:

Cho tứ giác ABCD nằm trong mặt phẳng (α) có hai cạnh AB và CD không song song. Gọi S là điểm nằm ngoài mặt phẳng (α) và M là trung điểm đoạn SC.

a) Tìm giao điểm N của đường thẳng SD và mặt phẳng (MAB)

b) Gọi O là giao điểm của AC và BD. Chứng minh rằng ba đường thẳng SO, AM, BN đồng quy

3
23 tháng 6 2016

Câu 1:

a) Trong (SCD) kéo dài SM cắt CD tại N, Chứng minh N thuộc (SBM)

b) (SBM) ≡ (SBN). Giao tuyến cần tìm là SO

c) Trong (SBN) ta có MB giao SO tại I

d) Trong (ABCD) , ta có AB giao CD tại K, Trong (SCD), ta có KQ giao SC tại P

Từ đó suy ra được giao tuyến của hai mặt phẳng (SCD) và (ABM) là KQ



 

23 tháng 6 2016

Câu 2:

a) Trong  (ABCD) gọi M = AE ∩ DC => M ∈ AE, AE ⊂ ( C'AE) => M ∈ ( C'AE). Mà M ∈ CD => M = DC ∩ (C'AE)

b) Chứng minh M ∈ (SDC), trong  (SDC) : MC' ∩ SD = F. Chứng minh thiết diện là AEC'F



Câu 3:

a) Chứng minh E, N là hai điểm chung của mặt phẳng (PMN) và (BCD)

b) EN ∩ BC = Q. Chứng minh Q là điểm cần tìm

Câu 4:

a) Chứng minh I, K là hai điểm chung của (BIC) và (AKD)

b) Gọi P = CI ∩ DN và Q = BI ∩ DM, chứng minh PQ là giao tuyến cần tìm

 


Câu 5:

a) Trong mặt phẳng (α) vì AB và CD không song song nên AB ∩ DC = E

=> E ∈ DC, mà DC ⊂ (SDC)

=> E ∈ ( SDC). Trong (SDC) đường thẳng ME cắt SD tại N

=> N ∈ ME mà ME ⊂ (MAB)

=> N ∈ ( MAB). Lại có N ∈ SD => N = SD ∩ (MAB)

b) O là giao điểm của AC và BD => O thộc AC và BD, mà AC ⊂ ( SAC)

=> O ∈( SAC), BD ⊂ (SBD) , O ∈ (SBD)

=> O là một điểm chung của (SAC) và (SBD), mặt khác S cũng là điểm chung của (SAC) và (SBD) => (SAC) ∩ (SBD) = SO

Trong mặt phẳng (AEN) gọi I = AM ∩ BN thì I thuộc AM và I thuộc BN

Mà AM ⊂ (SAC) => I ∈ (SAC), BN ⊂ ( SBD) => I ∈ (SBD). Như vậy I là điểm chung của (SAC) và (SBD) nên I thuộc giao tuyến SO của (SAC) và (SBD) tức là S, I, O thẳng hàng hay SO, AM, BN đồng quy

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Các vị trí tương đối của hai đường thẳng trong mặt phẳng:

- Hai đường thẳng không có điểm chung thì hai đường thẳng song song

- Hai đường thẳng có một điểm chung thì hai đường thẳng cắt nhau

- Hai đường thẳng có rất nhiều điểm chung thì hai đường thẳng trùng nhau

b) Hai đường thẳng a và b ở Hình 31a cùng nằm trong một mặt phẳng

Hai đường thẳng a và b ở Hình 31b không cùng nằm trong một mặt phẳng.

31 tháng 3 2017

Câu a) đúng. Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại (xem mục c). Tính chất của khoảng cách giữa hai đường thẳng chéo nhau (Bài 5 – chương III).

Câu b) sai. Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước.

Câu c) sai. Vì trong trường hợp đường thẳng vuông góc với mặt phẳng thì ta có vô số mặt phẳng vuông góc với mặt phẳng cho trước vì bất kì mặt phẳng nào chứa đường thẳng cũng đều vuông góc với mặt phẳng cho trước. Để có khẳng định đúng ta phải nói: Qua một đường thẳng không vuông góc với một mặt phẳng có duy nhất một mặt phẳng vuông góc với mặt phẳng đã cho.

Câu d) sai. Vì đường vuông góc chung của hai đường thẳng phải cắt cả hai đường ấy.

Câu 1Tính   A. 0B. 1 C. 2D. 3Câu 2Cho hình chóp S.ABC có SA vuông góc với (ABC) và tam giác ABC là tam giác vuông tại B. AH là đường cao của tam giác SAB. Phát biểu nào sau đây là sai?  A. B.  C. D. Câu 3Tính   A. Không tồn tạiB. C.  D. Câu 4Tính   A.  0B. 4 C. 9D. Câu 5Cho hình lập phương ABCD.A’B’C’D’. Khi đó góc giữa đường thẳng BC và B’D’ là:  A. B.  C. D. Câu...
Đọc tiếp

Câu 1

Tính 

 

 

A. 0

B. 1

 

C. 2

D. 3

Câu 2

Cho hình chóp S.ABC có SA vuông góc với (ABC) và tam giác ABC là tam giác vuông tại B. AH là đường cao của tam giác SAB. Phát biểu nào sau đây là sai?

 

 

A. 

B. 

 

C. 

D. 

Câu 3

Tính 

 

 

A. Không tồn tại

B. 

C. 

 

D. 

Câu 4

Tính 

 

 

A.  0

B. 4

 

C. 9

D. 

Câu 5

Cho hình lập phương ABCD.A’B’C’D’. Khi đó góc giữa đường thẳng BC và B’D’ là:

 

 

A. 

B. 

 

C. 

D. 

Câu 6

Tính .

 

 

A. 3

B. 

C. 

 

D. 2

Câu 7

Gọi  là VTCP của 2 đường thẳng d và d’. Nếu  thì:

 

 

A. 

B. 

 

C. 

D. 

Câu 8

Tính 

 

 

A. 

B. 

C. 

 

D. 

Câu 9

Có bao nhiêu đường thẳng đi qua 1 điểm và vuông góc với 1 mặt phẳng cho trước?

 

 

A. 0

B. 2

C. Vô số

 

D. 1

Câu 10

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O và SA = SC, SB = SD. Khi đó:

 

 

A. 

B. 

 

C. 

D. 

Câu 11

Cho . Khi đó  bằng:

 

 

A. 

B. 

C. 

 

D. 

Câu 12

Phát biểu nào sau đây là sai?

 

 

A. Một đường thẳng vuông góc với một mặt phẳng thì đường đường thẳng đó vuông góc với mọi đường thẳng nằm trong mặt phẳng.

B. Một đường thẳng vuông góc với một mặt phẳng nếu đường thẳng đó vuông góc với hai đường thẳng nằm trong mặt phẳng

C. Cho hai mặt phẳng song song với nhau, một đường thẳng vuông góc với mặt phẳng này thì cũng vuông góc với mặt phẳng còn lại.

 

D. Cho hai đường thẳng song song, một mặt phẳng vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng còn lại.

Câu 13

Cho ba đường thẳng phân biệt a, b, c. Phát biểu nào sau đây là sai?

 

 

A. 

B. 

C. 

 

D. 

Câu 14

Cho hình chóp S.ABC có SA vuông góc với (ABC) và tam giác ABC là tam giác vuông tại B. Vẽ AH là đường cao của tam giác SAB. Phát biểu nào sau đây là sai?

 

 

A. 

B. 

C. 

 

D. 

Câu 15

Cho hình chóp S.ABC với đáy ABC là tam giác đều và SA vuông góc với đáy. Gọi I là trung điểm BC. Mệnh đề nào sau đây là đúng?

 

 

A. 

B. 

C. 

 

D. 

Câu 16

Tính tổng 

 

 

A. 2

B. 

C. 

D. 4

 

Câu 17

Cho hình chóp S.ABCD với đáy ABCD là hình thoi tâm O và SA=SC. Khẳng định nào sau đây là đúng?

 

 

A. 

B. 

C. 

D. 

 

Câu 18

Tính 

 

 

A. Không tồn tại

B. 4

 

C. 

D. 

Câu 19

Tính 

 

 

A. 4

B. 

 

C. 0

D. Không tồn tại

Câu 20

Tính 

 

 

A. 3

B. 2

C. 0

 

D. 1

Câu 21

Cho . Tính 

 

 

A. 3

B. 2

C. 4

 

D. 1

Câu 22

Cho . Khi đó:

 

 

A. 

B. 

C. 

 

D. 

Câu 23

Cho hai đường thẳng phân biệt a, b và mặt phẳng (P). Mệnh đề nào sau đây là đúng?

 

 

A. 

B. 

C. 

 

D. 

Câu 24

Cho hình hộp ABCD.A’B’C’D’. Phát biểu nào sau đây là đúng?

 

 

A. 

B. 

C. 

 

D. 

Câu 25

Tính .

 

 

A. 

B. 0

 

C. 

D. 

Câu 26

Tính . Tìm b.

 

 

A. 1

B. 

 

C. 

D. 2

Câu 27

Tính .

 

 

A. 

B. 6

C. 0

D. 1

 

Câu 28

Cho hàm số . Tính .

 

 

A. Không tồn tại

B. 2

C. 

D. 1

 

Câu 29

Cho hình chóp S.ABCD với SA = SB = SC = SD và đáy là hình vuông tâm O. Vẽ  và . Khi đó:

 

 

A. 

B. 

C. 

D. 

 

Câu 30

Tính .

 

 

A. 

B. 

C. 

D. 2

 

Câu 31

Tính  với .

 

 

A. 

B. 

C. Không tồn tại

D. 0

 

Câu 32

Cho  và . Khi đó  bằng:

 

 

A. Không tồn tại

B. 

C. 

D. 0

 

Câu 33

Tính 

 

 

A. 0

 

B. Không tồn tại

C. 

D. 

Câu 34

Tính 

 

 

A. 

 

B. 3

C. 

D. 2

Câu 35

Cho . Khi đó  bằng:

 

 

A. 

 

B. 

C. 

D. 0

Câu 36

Tính 

 

 

A. 1

 

B. 0

C. 

D. 

Câu 37

Tính 

 

 

A. 

 

B. 1

C. 

D. 2

Câu 38

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O và SA vuông góc với đáy. Phát biểu nào sau đây là sai?

 

 

A. 

 

B. 

C. 

D. 

Câu 39

Cho . Khi đó  bằng

 

 

A. 

 

B. 

C. Không tồn tại

D. 

Câu 40

Cho . Tính .

 

 

A. 2

 

B. 

C. 1

D. 

1
27 tháng 4 2020

Bn nên xem lại cái đề

31 tháng 3 2017

a) Trong (ABCD) : AC ∩ BD = I, Trong ( ABEF): AE ∩ BF = J

=> (ACE) ∩ (BDF) = IJ

Tương tự (BCE) ∩ ( ADF) = GH

b) Trong (AGH): AM ∩ GH = N, chứng minh N AM và N (BCE)

c) Chứng minh bằng phương pháp phản chứng. Giả sử AC và BE cùng nằm trong một mặt phẳng, lập luận dẫn tới (ABCD) ≡ (ABEF), trái với giả thiết


19 tháng 3 2019

a) Giao tuyến của các cặp mặt phẳng

*Giao tuyến của (AEC) và (BFD)

• Trong hình thang ABCD, AC cắt DB tại G, ta có:

Giải bài 1 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Tương tự, AE cắt BF tại H,

Ta có :

Giải bài 1 trang 77 sgk Hình học 11 | Để học tốt Toán 11 ⇒ H ∈ (AEC) ∩ (BFD).

Vậy GH = (AEC) ∩ (BFD)

*Giao tuyến của (BCE) và (ADF)

Trong hình thang ABCD, BC cắt AD tại I, ta có: I ∈ (BCE) ∩ (ADF)

Trong hình thang ABEF, BE cắt AF tại K, ta có: K ∈ (BCE) ∩ (ADF)

Vậy IK = (BCE) ∩ (ADF)

b) Giao điểm của AM với mp(BCE)

Trong mp(ADF), AM cắt IK tại N, ta có:

N ∈ IK ⊂ (BCE)

Vậy N = AM ∩ (BCE).

c) Giả sử AC cắt BF.

⇒ Qua AC và BF xác định duy nhất 1 mặt phẳng.

Mà qua A và BF có duy nhất mặt phẳng (ABEF)

⇒ AC ⊂ (ABEF)

⇒ C ∈ (ABEF) (Vô lý).

Vậy AC và BF không cắt nhau.