A M N B C

Tam giác ABC cân tại A

Có BM là tia phân giác B

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2019

tu ve hinh :

tamgiac ABC co : 

AB = 7,2 => AB2 = 7,22 = 51,84

BC = 12 => BC2 = 122 = 144

AC = 9,6 => AC2 = 9,62 = 92,16

=> AB2 + AC2 = 51,84 + 92,16 = 144 = BC2

=> tamgiac ABC vuong tai A (dinh ly Py-ta-go dao)

13 tháng 4 2019

help me > _ <

14 tháng 6 2016

Hình bạn tự vẽ nhé!

a. Ta có:

M là trung điểm của AC => BM là đường trung tuyến của tam giác ABC.

N là trung điểm của AB  => CN là đường trung tuyến của tam giác ABC.

Mà tam giác ABC cân.

=> BM = CN

Ta có AN + NB = AB

          AM + MC = AC

Mà AN = NB ( N là trung điểm của AB)

     AM = MC ( M là trung điểm của AC)

     AB = AC ( tam giác ABC cân tại A)

=> AN = NB=AM = MC

Xét tam giác ABM và tam giác ACN có:

AB = AC (GT)

BM = CN (cmt)

AM = AN (cmt)

=> tam giác ABM = tam giác ACN (cạnh-cạnh-cạnh)

=> Góc ABM = góc ACN ( hai góc tương ứng)

b. Ta có:

Góc ABM + góc MBC = góc ABC

Góc ACN + góc NCB = góc ACB

Mà góc ABM = góc ACN (cmt)

      góc ABC = góc ACB (tam giác ABC cân tại A)

=> Góc MBC = góc NCB

=> Tam giác IBC cân tại I.

 

14 tháng 6 2016

Đợi mk chút, để nghiên cứu đã

19 tháng 4 2020

A B C M D E N

E là giao điểm của My và BC 

My // CN => ME // AC 

=> ^MEB = ^ACB ( đồng vị )  mà ^ACB = ^ABC ( \(\Delta\)ABC cân tại A ) 

=> ^MEB = ^ABC hay ^MEB = MBE (1)

a) Xét \(\Delta\)DMC và \(\Delta\)NCM có: 

MC chung 

^DMC = ^NCM ( so le trong )

^DCM = ^NMC ( so le trong ) 

=> \(\Delta\)DMC = \(\Delta\)NCM   => DM = CN (2)

Mặt khác: MB = CN (3) 

Từ  (2) ; (3) => DM = MB => \(\Delta\)BMD cân  (4) 

b ) (4) => ^MDB = ^MBD  (5)

(5) ; (1) => ^MDB + ^MEB = ^MBD + ^MBE 

=> 180 - ^DBE = ^DBE 

=> ^DBE = 90 độ 

=> \(\Delta\)DBC vuông tại B  có DC là cạnh huyền 

=> BC < CD 

10 tháng 7 2019

A B C D H E F M N

CM: a) Xét t/giác ABM và t/giác ACN

có: AB = AC (gt)

 \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) Ta có: BM + MD = BD

   CN + ND = CD

Mà BM = CN (gt); MD = ND (gt)

=> BD = CD

Xét t/giác ABD và t/giác ACD

có: AB = AC (gt)

  \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

 BD = CD (cmt)

=> t/giác ABD = t/giác ACD (c.g.c)

=> \(\widehat{BAD}=\widehat{CAD}\) (2 góc t/ứng)

=> AD là tia p/giác của \(\widehat{BAC}\)

c) Xét t/giác MEB = t/giác NFC

có: \(\widehat{BEM}=\widehat{CFN}=90^0\) (gt)

  BM = CN (gt)

    \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

=> t/giác MEB = t/giác NFC (ch - gn)

d) Ta có: AB = AE + EB

 AC = AF + FA

mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)

=> AE = AF 

=> t/giác AEF cân tại A

=> \(\widehat{AEF}=\widehat{AFE}=\frac{180^0-\widehat{A}}{2}\) (1)

T/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)

Từ (1) và (2) => \(\widehat{AEF}=\widehat{B}\)

Mà 2 góc này ở vị trí đồng vị

=> EF // BC

e) Xét t/giác AEH và t/giác AFH

có: AE = AF (cmt)

 \(\widehat{AEH}=\widehat{AFH}=90^0\) (gt)

 AH : chung

=> t/giác AEH = t/giác AFH (ch - cgv)

=> \(\widehat{EAH}=\widehat{FAH}\) (2 góc t/ứng)

=> AH là tia p/giác của \(\widehat{A}\)

Mà AD cũng là tia p/giác của \(\widehat{A}\)

=> AH \(\equiv\) AD 

=> A, D, H thẳng hàng

5 tháng 5 2023

M: a) Xét t/giác ABM và t/giác ACN

có: AB = AC (gt)

 �^=�^B=C (vì t/giác ABC cân)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) Ta có: BM + MD = BD

   CN + ND = CD

Mà BM = CN (gt); MD = ND (gt)

=> BD = CD

Xét t/giác ABD và t/giác ACD

có: AB = AC (gt)

  �^=�^B=C (vì t/giác ABC cân)

 BD = CD (cmt)

=> t/giác ABD = t/giác ACD (c.g.c)

=> ���^=���^BAD=CAD (2 góc t/ứng)

=> AD là tia p/giác của ���^BAC

c) Xét t/giác MEB = t/giác NFC

có: ���^=���^=900BEM=CFN=900 (gt)

  BM = CN (gt)

    �^=�^B=C (vì t/giác ABC cân)

=> t/giác MEB = t/giác NFC (ch - gn)

d) Ta có: AB = AE + EB

 AC = AF + FA

mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)

=> AE = AF 

=> t/giác AEF cân tại A

=> ���^=���^=1800−�^2AEF=AFE=21800A (1)

T/giác ABC cân tại A
=> �^=�^=1800−�^2B=C=21800A (2)

Từ (1) và (2) => ���^=�^AEF=B

Mà 2 góc này ở vị trí đồng vị

=> EF // BC

e) Xét t/giác AEH và t/giác AFH

có: AE = AF (cmt)

 ���^=���^=900AEH=AFH=900 (gt)

 AH : chung

=> t/giác AEH = t/giác AFH (ch - cgv)

=> ���^=���^EAH=FAH (2 góc t/ứng)

=> AH là tia p/giác của �^A

Mà AD cũng là tia p/giác của �^A

=> AH  AD 

=> A, D, H thẳng hàng

4 tháng 10 2016

A B C N M

a)Có: ^B=^C(gt)

Mà BM là tia pg của ^B

      CN là tia pg của ^C

=> ^CBM=^BCN=^ABM=^ACN

Xét ΔBNC và ΔCMB có:

   ^B=^C(gt)

    BC: cạnh chung

    ^BCN=^CBM(cmt)

=>ΔBNC=ΔCMB(g.c.g)

=>NC=BM

b) Vì ^B=^C(gt)

=> ΔABC cân tại A

=>AB=AC

Xét ΔABM và ΔACN có:

   ^A: góc chung

    AB=AC(cmt)

    ^ABM=^ACN(cmt)

=>ΔABM=ΔACN(g.c.g)