K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Năm số hạng đầu của dãy số: 1; 3; 5; 7; 9.

b) Công thức biểu diễn số hạng \({u_n}\) theo số hạng \({u_{n - 1}}\) là: \({u_n} = {u_{n - 1}} + 2\;\left( {n \ge 2} \right)\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Công thức số hạng tổng quát \({u_n} = 5n,\;n \in {N^*}\).

b) Số hạng đầu \({u_1} = 5\), \({u_n} = {u_{n - 1}} + 5\)

Suy ra hệ thức truy hồi: \(\left\{ \begin{array}{l}{u_1}\; = 5\\{u_n} = {u_{n - 1}} + 5\end{array} \right.\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_2} = {u_1}.q\)

\({u_3} = {u_2}.q = {u_1}.{q^2}\)

\({u_4} = {u_3}.q = {u_1}.{q^3}\)

\({u_5} = {u_4}.q = {u_1}.{q^4}\)

b) Từ a suy ra: \({u_n} = {u_1} \times {q^{n - 1}}\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Ta có: \({u_1} = 1,{u_2} = 2,{u_3} = 3\)

Dự đoán \({u_n} = n\)

b)    Ta có: \(\begin{array}{l}{v_1} = 1\\{v_2} = 8 = {2^3}\\{v_3} = 27 = {3^3}\\{v_4} = 64 = {4^3}\end{array}\)

Dự đoán: \({v_n} = {n^3}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Ta có:

\(\begin{array}{l}{u_1} + {u_2} + {u_3} =  - 1 \Leftrightarrow {u_1} + {u_1} + d + {u_1} + 2d =  - 1\\ \Leftrightarrow 3{u_1} + 3d =  - 1\\ \Leftrightarrow 3.\left( {\frac{1}{3}} \right) + 3d =  - 1\\ \Leftrightarrow 3d =  - 2\\ \Leftrightarrow d =  - \frac{2}{3}\end{array}\)

Công thức tổng quát của số hạng \({u_n}\): \({u_n} = \frac{1}{3} + \left( {n - 1} \right)\left( { - \frac{2}{3}} \right)\)

b)    Ta có:

\(\begin{array}{l} - 67 = \frac{1}{3} + \left( {n - 1} \right).\left( { - \frac{2}{3}} \right)\\ \Leftrightarrow n - 1 = 101\\ \Leftrightarrow n = 102\end{array}\)

 - 67 là số hạng thứ 102 của cấp số cộng

c)    Ta có:

\(\begin{array}{l}7 = \frac{1}{3} + \left( {n - 1} \right).\left( { - \frac{2}{3}} \right)\\ \Leftrightarrow n - 1 =  - 10\\ \Leftrightarrow n =  - 9\end{array}\)

 7 không là số hạng của cấp số cộng

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_1} = 5,\;\;{u_2} = 10,\;\;\;{u_3} = 15,\;\;{u_4} = 20,\;\;\;{u_5} = 25\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{5n}}{{5n - 1}} \)phụ thuộc vào n.

Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.

b) \({u_1} = 5,\;\;{u_2} = 25,\;\;{u_3} = 125,\;\;\;{u_4} = 625,\;\;\;{u_5} = 3125\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{{5^n}}}{{{5^{n - 1}}}} = 5,\;\forall n \ge 2\).

Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).

Số hạng tổng quát: \({u_n} = 5 \times {5^{n - 1}}= 5^{n}\).

c) \({u_1} = 1,\;\;\;{u_2} = 2,\;\;\;{u_3} = 6,\;\;\;{u_4} = 24,\;\;\;{u_5} = 120\).

 có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = n\) phụ thuộc vào n, \(\forall n \in {N^*}\).

Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.

d) \({u_1} = 1,\;\;{u_2} = 5,\;\;{u_3} = 25,\;\;\;{u_4} = 125,\;\;\;{u_5} = 625\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = 5,\;\forall n \ge 2\).

Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).

Số hạng tổng quát: \({u_n} = {5^{n - 1}}\).

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

Dãy số - cấp số cộng và cấp số nhân

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Ta có số hạng tổng quát của dãy số \({u_n} = 5n + 1\;\left( {n\; \in {N^*}} \right)\).

b) Các số hạng của dãy số là: 6; 11; 16; 21; 26.

Số hạng đầu của dãy số là: 6 và số hạng cuối của dãy số là 26.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Cấp số nhân có số hạng đầu \({u_1} = 5\) và công bội \(q = 2\).

Vậy ta có: \({u_n} = {u_1}.{q^{n - 1}} = {5.2^{n - 1}}\)

b) Cấp số nhân có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{{10}}\).

Vậy ta có: \({u_n} = {u_1}.{q^{n - 1}} = 1.{\left( {\frac{1}{{10}}} \right)^{n - 1}} = \frac{1}{{{{10}^{n - 1}}}}\).