\(\left(x-3\right)^2=49\)

b) \(x^{13}=27x^{10}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

a)(x-3)2=49

(x-3)2=72

x-3=7

x=7+3

x=10

b)x13=27.x10

x13:x10=33

x13-10=33

x3=33

x=3

14 tháng 9 2017

(x-3)2 =72

=>x-3 = 7

=> x=10

3 tháng 12 2018

easy

\(\left(x-3\right)^2=16\)

\(\Rightarrow\left(x-3\right)^2=4^2\)

\(\Rightarrow x-3=4\)

\(\Rightarrow x=4+3\)

\(\Rightarrow x=7\)

1 tháng 9 2019

a, \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)

\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)

\(\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)

\(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)

\(\frac{1}{x+1}=\frac{18}{90}-\frac{13}{90}\)

\(\frac{1}{x+1}=\frac{1}{18}\)

⇒ x + 1 = 18

⇒ x = 17

Vậy x = 17

b, \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)

\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{49.3}{148}\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{147}{148}\)

\(1-\frac{1}{x+3}=\frac{147}{148}\)

\(\frac{1}{x+3}=1-\frac{147}{148}\)

\(\frac{1}{x+3}=\frac{1}{148}\)

⇒ x + 3 = 148

⇒ x = 145

Vậy x = 145

29 tháng 6 2017
  1. \(x=-2\)
  2. \(x=-1\)
  3. \(x=-2\)
  4. \(x=-2\)
  5. \(x=-1\)
29 tháng 6 2017

chỉ cách giải luôn nha bạn chỉ rõ mới k

24 tháng 2 2017

a) (-a/2)3xy(4a2x3)(13/3ay2)

=(4.13/3.3)(x.x3)(y.y2)(-a/2.a2.a)

=52x4y3(-a)3/2

24 tháng 2 2017

c)(7/3x2y3)10(3/7x5y4)10

=(7/3)10.(3/7)10.(x20.x50).(y30.y40)

= x70.y70

13 tháng 11 2016

x+(-31/12)^2=(49/12)^2-x

x+x=(49/12)^2-(-31/12)^2

tính x

từ x tìm ra y

b)x(x-y):[y(x-y)]=3/10:(-3/50)=...

=>x/y=... =>x=...;y=...

13 tháng 10 2017

Giải:

a) \(x+\left(-\dfrac{31}{12}\right)^2=\left(\dfrac{49}{12}\right)^2-x=y\)

\(\Leftrightarrow x+\left(-\dfrac{31}{12}\right)^2=\left(\dfrac{49}{12}\right)^2-x\)

\(\Leftrightarrow x+\left(-\dfrac{31}{12}\right)^2-\left(\dfrac{49}{12}\right)^2+x=0\)

\(\Leftrightarrow2x+\left(-\dfrac{31}{12}\right)^2-\left(\dfrac{49}{12}\right)^2=0\)

\(\Leftrightarrow2x+\dfrac{\left(-31\right)^2}{12^2}-\dfrac{49^2}{12^2}=0\)

\(\Leftrightarrow2x+\dfrac{\left(-31\right)^2-49^2}{144}=0\)

\(\Leftrightarrow2x+\dfrac{961-2401}{144}=0\)

\(\Leftrightarrow2x+\dfrac{-1440}{144}=0\)

\(\Leftrightarrow2x+\left(-10\right)=0\)

\(\Leftrightarrow2x=10\)

\(\Leftrightarrow x=5\)

\(x+\left(-\dfrac{31}{12}\right)^2=y^2\)

\(\Leftrightarrow5+\dfrac{961}{144}=y^2\)

\(\Leftrightarrow y^2=\dfrac{1681}{144}\)

\(\Leftrightarrow y=\pm\dfrac{41}{12}\)

Vậy ...

b) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\left(\dfrac{1}{2}x-5\right)^{20}\ge0;\forall x\)

\(\left(y^2-\dfrac{1}{4}\right)^{10}\ge0;\forall y\)

\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\le0\)

\(\Leftrightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}x=5\\y^2=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)

Vậy ...

Chúc bạn học tốt!

22 tháng 10 2019

1.

a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)

b) x=0

d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)

e) \(x=\frac{2}{3}\)

31 tháng 8 2019

a) ta có: \(\frac{x+13}{2006}+\frac{x+2006}{13}+\frac{x+1}{2018}+3=0\)

\(\Rightarrow\frac{x+13}{2006}+1+\frac{x+2006}{13}+1+\frac{x+1}{2018}+1=0\)

\(\Rightarrow\frac{x+2019}{2006}+\frac{x+2019}{13}+\frac{x+2019}{2018}=0\)

\(\Rightarrow\left(x+2019\right)\left(\frac{1}{2006}+\frac{1}{13}+\frac{1}{2018}\right)=0\)

\(\frac{1}{2006}+\frac{1}{13}+\frac{1}{2018}>0\)

\(\Rightarrow x+2019=0\)

\(\Rightarrow x=-2019\)

31 tháng 8 2019

b) \(\frac{4}{\left(x+3\right)\left(x+7\right)}+\frac{3}{\left(x+7\right)\left(x+10\right)}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)

\(\Rightarrow\frac{\left(x+7\right)-\left(x+3\right)}{\left(x+3\right)\left(x+7\right)}+\frac{\left(x+10\right)-\left(x+7\right)}{\left(x+7\right)\left(x+10\right)}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)

\(\Rightarrow\frac{1}{x+3}-\frac{1}{x+7}+\frac{1}{x+7}-\frac{1}{x+10}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)

\(\Rightarrow\frac{1}{x+3}-\frac{1}{x+10}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)

\(\Rightarrow\frac{7}{\left(x+3\right)\left(x+10\right)}=\frac{x}{\left(x+3\right)\left(x+10\right)}\)

\(\Rightarrow x=7\)