Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải của bạn Nhật Linh đúng rồi, tuy nhiên cần thêm điều kiện để A có nghĩa: \(x\ne\pm2\)
a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5
=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5
=(x-2)/(2x^2-5x+5)(x-1)
\(1.\)
\(a.\)
\(\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2\left(x^2-1\right)}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{1\left(x-1\right)\left(x^2+3\right)}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x^2-1\right)}+\dfrac{x^3-x^2+3x-3}{\left(x^2-1\right)\left(x^2+3\right)}\)
\(=\dfrac{8+2x^2-2+x^3-x^2+3x-3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^3+x^2+3x+3}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{x^2\left(x+1\right)+3\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=\dfrac{\left(x^2+3\right)\left(x+1\right)}{\left(x^2+3\right)\left(x^2-1\right)}\)
\(=x-1\)
\(b.\)
\(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{x^2-y^2}\)
\(=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{2\left(x^2-y^2\right)}-\dfrac{\left(x-y\right)^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2}{2\left(x^2-y^2\right)}-\dfrac{x^2-2xy+y^2}{2\left(x^2-y^2\right)}+\dfrac{4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4xy+4y^2}{2\left(x^2-y^2\right)}\)
\(=\dfrac{4y\left(x+y\right)}{2\left(x^2-y^2\right)}\)
\(=\dfrac{2y}{\left(x-y\right)}\)
Tương tự các câu còn lại
a: \(A=\dfrac{4x\left(2-x\right)+8x^2}{\left(2+x\right)\left(2-x\right)}:\dfrac{x-1-2x+4}{x\left(x-2\right)}\)
\(=\dfrac{8x-4x^2+8x^2}{\left(x+2\right)\cdot\left(-1\right)\cdot\left(x-2\right)}\cdot\dfrac{x\left(x-2\right)}{-x+3}\)
\(=\dfrac{8x+4x^2}{\left(x+2\right)\cdot\left(-1\right)}\cdot\dfrac{x}{-x+3}\)
\(=\dfrac{4x\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}\cdot x=\dfrac{4x^2}{x+3}\)
b: \(=\left(n^2+3n+1+1\right)\left(n^2+3n+1-1\right)\)
\(=\left(n^2+3n+2\right)\left(n^2+3n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮4!=24\)
Câu 1:
a: \(A=\dfrac{x+1-x+1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x^2+1-2x}{2}\)
\(=\dfrac{2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}=\dfrac{x-1}{x+1}\)
b: Để A=x/6 thì \(\dfrac{x-1}{x+1}=\dfrac{x}{6}\)
\(\Leftrightarrow x^2+x-6x+6=0\)
=>x=3 hoặc x=2
a. \(A=\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}\right):\dfrac{x}{x^2-1}\)
\(A=\left(\dfrac{x+1-x+1}{\left(x+1\right)\left(x-1\right)}\right).\dfrac{\left(x-1\right)\left(x+1\right)}{x}\)
\(A=\dfrac{2}{\left(x+1\right)\left(x-1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{x}\)
\(A=\dfrac{2}{x}\)
b.
Ta có:
\(A=\dfrac{2}{x}=\dfrac{1}{2}\Rightarrow x=4\)
c.
\(A=\dfrac{2}{x}< 0\Rightarrow x< 0\)