\(\left|2x-1\right|+\left|x+8\right|=4x\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2018

a)\(\left|5x-4\right|=\left|x+2\right|\Leftrightarrow\) \(\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}\) \(\Leftrightarrow\begin{cases}5x-x=4+2\\5x+x=4-2\end{cases}\Leftrightarrow\)\(\begin{cases}4x=6\\6x=2\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}\)

b)\(\left|7x+1\right|-\left|5x+6\right|=0\Leftrightarrow\left|7x+1\right|=\left|5x+6\right|\Leftrightarrow\begin{cases}7x+1=5x+6\\7x+1=-5x-6\end{cases}\Leftrightarrow\begin{cases}7x-5x=-1+6\\7x+5x=-1-6\end{cases}\Leftrightarrow\begin{cases}2x=5\\12x=-7\end{cases}\Leftrightarrow\begin{cases}x=\frac{5}{2}\\x=-\frac{7}{12}\end{cases}\)

c) Tương tự

Cứ áp dụng \(\left|A\left(x\right)\right|=\left|B\left(x\right)\right|\)\(\Leftrightarrow\)\(A\left(x\right)=B\left(x\right)\) hoặc \(A\left(x\right)=-B\left(x\right)\) là đc mà 

VD câu a) nè \(\left|5x-4\right|=\left|x+2\right|\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}}}\)

Tương tự .... 

Chúc bạn học tốt ~ 

7 tháng 12 2019

a, \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)\(\Rightarrow\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)\(\Rightarrow x-\frac{1}{2}=\frac{1}{3}\)\(\Rightarrow x=\frac{5}{6}\)

b, \(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)

\(\Rightarrow\left(x-1\right)^{x+2}-\left(x-1\right)^{x+6}=0\)

\(\Rightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^4\right]=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^4=1\end{cases}}\)

Giải: \(\left(x-1\right)^4=1\)\(\Rightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)

c, Vì \(\left(x+20\right)^{100}\ge0\)\(\forall x\inℝ\)\(\left|y+4\right|\ge0\)\(\forall y\inℝ\)

\(\Rightarrow\left(x+20\right)^{100}+\left|y+4\right|\ge0\)\(\forall x,y\inℝ\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+20=0\\y+4=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-20\\y=-4\end{cases}}\)

d, \(2^{x-1}=16\)\(\Rightarrow2^{x-1}=2^4\)=> x - 1 = 4 => x = 5 

10 tháng 8 2020

a) 

<=> \(x\left(0,2-1,2\right)+3,7=-6,3\)

<=> \(-x=-10\)

<=> \(x=10\)

b) 

<=> \(x\left(x-1\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

d) 

<=> \(2\sqrt{x+1}=8\)

<=> \(\sqrt{x+1}=4\)

<=> \(x=15\)

e) 

<=> \(\orbr{\begin{cases}1-x=\sqrt{2}-0,\left(1\right)\\1-x=0,\left(1\right)-\sqrt{2}\end{cases}}\)

<=> \(\orbr{\begin{cases}1+0,\left(1\right)-\sqrt{2}=x\\x=1+\sqrt{2}-0,\left(1\right)\end{cases}}\)

10 tháng 8 2020

a) 0,2x + ( -1, 2 )x + 3, 7 = -6, 3

<=> x( 0,2 - 1, 2 ) + 3, 7 = -6, 3

<=> -x = -10

<=> x = 10

b) x2 = x

<=> x2 - x = 0

<=> x( x - 1 ) = 0

<=> \(\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

c) 0,(12) : 1,(6) = x : 0,(4)

<=> 4/33 : 5/3 = x : 4/9

<=> 4/55 = x : 4/9

<=> x = 16/495

d) \(2\sqrt{x+1}-3=5\)

\(\Leftrightarrow2\sqrt{x+1}=8\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\)

e) \(\left|1-x\right|=\sqrt{2}-0,\left(1\right)\)

\(\Leftrightarrow\left|1-x\right|=\sqrt{2}-\frac{1}{9}\)

\(\Leftrightarrow\left|1-x\right|=\frac{-1+9\sqrt{2}}{9}\)

\(\Leftrightarrow\orbr{\begin{cases}1-x=\frac{-1+9\sqrt{2}}{9}\\1-x=\frac{1-9\sqrt{2}}{9}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{10-9\sqrt{2}}{9}\\x=\frac{8+9\sqrt{2}}{9}\end{cases}}\)

a) \(M\left(x\right)=2x-\frac{1}{2}=0\Leftrightarrow2x=0+\frac{1}{2}=\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\div2=\frac{1}{4}\)

Vậy nghiệm của M( x ) là \(\frac{1}{4}\)

b) \(N\left(x\right)=\left(x+5\right)\left(4x^2-1\right)=0\) Chia 2 TH

TH1 : \(x+5=0\Leftrightarrow x=0-5=-5\)

TH2 : \(4x^2-1=0\Leftrightarrow4x^2=1\Leftrightarrow x^2=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)

Vậy N( x ) có 2 nghiệm là \(x=-5;x=\frac{1}{2}\)

c) \(P\left(x\right)=9x^3-25x=0\Leftrightarrow x\left(9x^2-25\right)=0\) Chia 2 TH

TH1 : \(x=0\). TH2 : \(9x^2-25=0\Leftrightarrow9x^2=0+25=25\)

\(\Rightarrow x^2=\frac{25}{9}\Rightarrow x=\frac{5}{3}\). Vậy P( x ) có 2 nghiệm là \(x=0;x=\frac{5}{3}\)

20 tháng 1 2020

3. 

a) thay vào hàm số y=f(x)=-2x+3, ta đc:

f(-2)=-2.(-2)+3=7

f(-1)=-2.(-1)+3=5

f(0)=-2.0+3=3

\(f\left(-\frac{1}{2}\right)=-2.\left(-\frac{1}{2}\right)+3=4\)

\(f\left(\frac{1}{2}\right)=-2.\frac{1}{2}+3=2\)

13 tháng 8 2020

câu 1 

a)\(\left|x-2\right|+4=6\Leftrightarrow\left|x-2\right|=2\Leftrightarrow\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}}\)

b) \(B=x^2y^3-3xy+4\)

khi x = -1 và y = 2

\(\Leftrightarrow B=\left(-1\right)^2.2^3-3.\left(-1\right).\left(2\right)+4\)

\(\Leftrightarrow B=1.8-\left(-6\right)+4\)

\(\Leftrightarrow B=14+4=18\)

c) nhân phần biến với biến hệ với hệ thì ra thôi

13 tháng 8 2020

Câu 1 a) |x - 2| + 4 = 6

=> |x - 2| = 2

=> \(\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)

Vậy x \(\in\left\{4;0\right\}\)

b) Thay x = -1 ; y = 2 vào B ta có :

B = (-1)2.23 - 3.(-1).2 + 4

= 8 + 6 + 4 = 18

c) \(A=\frac{1}{3}x^2y^3.\left(-6x^3y^2\right)^2=\frac{1}{3}x^2y^3.36x^6y^4=12x^8y^7\)

Hệ số : 12

Bậc của đơn thức : 15

Phần biến x8y7

2) a)  f(x) - g(x) = (2x3 - x2 + 5) - (-2x3 + x2 + 2x - 1)

= 2x3 - x2 + 5 + 2x3 - x2 - 2x + 1)

= 4x3 - 2x2 + 2x + 6

Bậc của f(x) - g(x) là 3 

b) f(x) + g(x) = (2x3 - x2 + 5) + (-2x3 + x2 + 2x - 1)

= 2x3 - x2 + 5 - 2x3 + x2 + 2x - 1

= 2x + 4

Lại có f(x) + g(x) = 0

=> 2x + 4 = 0

=> 2x = -4

=> x = -2

Vậy x = -2

Bài 1:...
Đọc tiếp

Bài 1: Tính

a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)

b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)

c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)

Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)

b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\) 

c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)

d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)

e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)

Bài 3: Chứng minh rằng

a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)

b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)

Bài 4: 

a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)

b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)

c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)

1

Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)

           \(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)

          \(=100.\frac{2}{101}=\frac{200}{101}\)

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0
19 tháng 4 2020

Bài 1:

Mình sửa lại đề 1 chút:  \(x+x^3+x^5+...+x^{101}=P\left(x\right)\)

Số hạng trong dãy là: (101-1):2+1=51

P(-1)=(-1)+(-1)3+(-1)5+...+(-1)101

Vì (-1)2n+1=-1 với n thuộc Z

=> P(-1)=(-1)+(-1)+....+(-1) (có 51 số -1)

=> P(-1)=-51