Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(A=\left(1-\frac{z}{y}\right).\left(1-\frac{x}{y}\right).\left(1-\frac{y}{z}\right)\)
\(A=\frac{x-z}{x}.\frac{x+y}{z}.\frac{z-y}{x}\)
\(x+y-z=0\Leftrightarrow\hept{\begin{cases}x+y=z\\x-z=-y\\z-y=x\end{cases}}\)
Thay vào A, ta được :
\(A=\frac{-y}{x}.\frac{z}{y}.\frac{x}{z}=\frac{-yzx}{xyz}=-1\)
~Will~be~Pens~
Ta có \(x-y-z=0\)
\(\Rightarrow\hept{\begin{cases}x-z=y\\y-x=-z\\z+y=x\end{cases}}\)( 1 )
Ta có:
\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
Thay điều ( 1 ) vào biểu thức ta có:
\(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
\(\Rightarrow B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}\)
\(\Rightarrow B=-1\)
Vậy B = -1
x+y-z=0
Suy ra x+y=z
-y+z=x
-x+z=y
Thay vô tính B nha
Hok tốt
\(\text{Ta có: }x-y-z=0\Rightarrow x=y+z\)
\(y=x-z\)
\(z=x-y\)
\(\text{Mặt khác: }A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
\(=\left(\frac{x}{x}-\frac{z}{x}\right)\left(\frac{y}{y}-\frac{x}{y}\right)\left(\frac{z}{z}+\frac{y}{z}\right)\)
\(=\frac{x-z}{x}.\frac{y-x}{y}.\frac{y+z}{z}\)
\(=\frac{x-z}{y+z}.\frac{y-x}{x-z}.\frac{y+z}{x-y}\)
\(=\frac{x-z}{y+z}.\frac{y-x}{x-z}.\frac{y+z}{-\left(y-x\right)}\)
\(=-1\)
Ta có :
\(x-y-z=0\)
\(\Rightarrow\)\(x-z=y\) \(\left(1\right)\)
\(\Rightarrow\)\(y-x=-z\) \(\left(2\right)\)
\(\Rightarrow\)\(z+y=x\) \(\left(3\right)\)
Lại có :
\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)
Thay (1), (2) và (3) vào \(B=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\) ta được :
\(B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=\frac{xy\left(-z\right)}{xyz}=\frac{\left(-1\right)xyz}{xyz}=-1\)
Vậy \(B=-1\)
Chúc bạn học tốt ~
x-y-z=0
=>x=y+z=>x-z=y
y=x-z=>y-x=-z
z=x+y=>z-y=x
B=(x/x-z/x)(y/y-x/y).(z/z-y/z)
B=(y/x)(-z/y)(x/z)
B=(y.-z.x).(x.y.z)
B=-1
A = (1−zx )(1xy )(1+yz )
A = \(\frac{x-z}{x}\). \(\frac{x}{y}\). \(\frac{z+y}{z}\)
Mà x-y-z = 0
=> x-z = y ; z+y=x
Ta có A= \(\frac{y}{x}\). \(\frac{x}{y}\). \(\frac{x}{z}\)= 1.\(\frac{x}{z}\)= \(\frac{x}{z}\)