Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(15+5x^2-3x^2-9x\right):\left(5-3x\right)\)
\(=\dfrac{2x^2-9x+15}{5-3x}\)
b) \(x^3-3x^2+t-4x⋮\left(1+x+x^2\right)\)
\(\Rightarrow x^3+x^2+x-4x^2-5x+t⋮x^2+x+1\)
\(\Rightarrow x\left(x^2+x+1\right)-4x^2-5x+t⋮x^2+x+1\)
\(\Rightarrow x\left(x^2+x+1\right)-4\left(x^2+x+1\right)-x+4+t⋮x^2+x+1\)
\(\Rightarrow\left(x-4\right)\left(x^2+x+1\right)-\left(x-4\right)+t⋮x^2+x+1\)
Đặt nhân tử chung rồi tự lm tiếp
3x^3-5x^2+9x-15 3x-5 x^2+3 3x^3-5x^2 9x-15 9x-15 0
Vậy \(3x^2-5x^2+9x-15=\left(3x-5\right)\left(x^2+3\right)\)
b
\(\left(x+1\right)\left(x-2\right)-x\left(x-3\right)=0\)
\(\Leftrightarrow x^2-2x+x-2-x^2+3x=0\)
\(\Leftrightarrow2x-2=0\)
\(\Leftrightarrow x=1\)
b
\(x^2+4x+3=0\)
\(\Leftrightarrow\left(x^2+4x+4\right)-1=0\)
\(\Leftrightarrow\left(x+2\right)^2-1=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=-1;x=-3\)
a) \(\left(3x-2\right)^2-\left(3x-5\right)\left(3x+2\right)=11\)
\(\Leftrightarrow\left(9x^2-12x+4\right)-\left(9x^2+6x-15x-10\right)=11\)
\(\Leftrightarrow9x^2-12x+4-9x^2-6x+15x+10=11\)
\(\Leftrightarrow-3x+3=0\)
\(\Leftrightarrow-3x=-3\)
\(\Leftrightarrow x=1\)
Vậy \(S=\left\{1\right\}\)
b) \(\left(4x-3\right)^2-\left(4x-5\right)\left(4x+5\right)=32\)
\(\Leftrightarrow\left(16x^2-24x+9\right)-\left(16x^2-25\right)=32\)
\(\Leftrightarrow16x^2-24x+9-16x^2+25=32\)
\(\Leftrightarrow-24x+2=0\)
\(\Leftrightarrow-24x=-2\)
\(\Leftrightarrow x=\dfrac{1}{12}\)
Vậy \(S=\left\{\dfrac{1}{12}\right\}\)
c) \(\left(5x-2\right)^2-\left(5x+3\right)\left(5x-5\right)=1\)
\(\Leftrightarrow\left(25x^2-20x+4\right)-\left(25x^2-25x+15x-15\right)=1\)
\(\Leftrightarrow25x^2-20x+4-25x^2+25x-15x+15=1\)
\(\Leftrightarrow-10x+18=0\)
\(\Leftrightarrow-10x=-18\)
\(\Leftrightarrow x=\dfrac{9}{5}\)
Vậy \(S=\left\{\dfrac{9}{5}\right\}\)
d) \(\left(x-4\right)^2-\left(x-7\right)\left(2x-3\right)=5-x^2\)
\(\Leftrightarrow\left(x^2-8x+16\right)-\left(2x^2-3x-14x+21\right)=5-x^2\)
\(\Leftrightarrow x^2-8x+16-2x^2+3x+14x-21=5-x^2\)
\(\Leftrightarrow x^2-8x+16-2x^2+3x+14x-21-5+x^2=0\)
\(\Leftrightarrow9x-10=0\)
\(\Leftrightarrow9x=10\)
\(\Leftrightarrow x=\dfrac{10}{9}\)
Vậy \(S=\left\{\dfrac{10}{9}\right\}\)
Cho mk hỏi vs ! Câu a bn rút gọn hay bn lm kiểu j mak tự nhiên 11 lại lôi đâu ra số 0 vậy ? Gt hộ mk vs, mk vẫn chưa hiểu cách bn lm ở câu a cho lắm !
a) \(\left(2x+3\right)\left(x-4\right)+\left(x+5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20\)
\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x+10=3x^2-12x+20\)
\(\Leftrightarrow3x^2-7x-2=3x^2-12x+20\)
\(\Leftrightarrow-7x+12x=20+2\)
\(\Leftrightarrow5x=22\)
\(\Rightarrow x=\dfrac{22}{5}\)
tick cho mk nha
b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)
\(\Leftrightarrow24x^2+16x-9x-6-4x^2-23x-28=10x^2+3x-1\)
\(\Leftrightarrow20x^2-16x-34-10x^2-3x+1=0\)
\(\Leftrightarrow10x^2-19x-33=0\)
\(\Delta=\left(-19\right)^2-4.10.\left(-33\right)=1320\)
\(x_1=3;x_2=\dfrac{-11}{10}\)
Tick cho mk nha
cau a : (3x^2y-6xy+9x)(-4/3xy)
=-4/3xy.3x^2y+4/3xy.6xy-4/3xy.9x
=-4x+8-8y
cau b : (1/3x+2y)(1/9x^2-2/3xy+4y^2)
=(1/3)^3-2/9x^2y+8y^3+4/3xy^2+2/9x^2y-4/3xy^2+8y^3
=(1/3)^3 + (2y)^3x-2
cau c : (x-2)(x^2-5x+1)+x(x^2+11)
=x^3-5x^2+x-2x^2+10x-2+x^3+11x
=2x^3-7x^2+22x-2
cau d := x^3 + 6xy^2 -27y^3
cau e := x^3 + 3x^2 -5x - 3x^2y - 9xy = 15y
cau f := x^2-2x+2x -4-2x-1
= x(x-2)-5
a: \(\dfrac{-3x^3+5x^2-9x+15}{-3x+5}\)
\(=\dfrac{3x^3-5x^2+9x-15}{3x-5}\)
\(=\dfrac{x^2\left(3x-5\right)+3\left(3x-5\right)}{3x-5}=x^2+3\)
b: \(x^3-3x^2-4x+t⋮x^2+x+1\)
\(\Leftrightarrow x^3+x^2+x-4x^2-4x-4-x+t+4⋮x^2+x+1\)
=>t+4-x=0
hay t=x-4