Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Ta có \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\left(1\right)< =>\left(\left|x\right|+\left|y\right|\right)^2\ge\left|x+y\right|^2=\left(x+y\right)^2\)
\(< =>\left|x\right|^2+\left|y\right|^2+2\left|x\right|\left|y\right|\ge x^2+2xy+y^2\)
\(< =>2\left|x\right|\left|y\right|\ge2xy< =>\left|xy\right|\ge xy\) (dấu "=" xảy ra <=> \(xy\ge0\) )
bđt trên luôn đúng nên (1) đúng ,đpcm
ý sau tương tự
2) \(A=\left|x-2001\right|+\left|x-1\right|\ge\left|x-2001+1-x\right|=2000\)
dấu "=" xảy ra \(< =>\left(x-2001\right)\left(1-x\right)\ge0< =>1\le x\le2001\)
vậy minA=2000 khi ............
BẠN ĐỮNG CÓ NÓI DỐI NHA MÌNH TICK CHO BẠN BẠN CÓ LÀM ĐÂU.THÔI BẠN VỀ CHUỒNG NẰM GẶM XƯƠNG ĐI CHO KHỎI NHỨC ĐẦU THIÊN HẠ (NHỚ ĐỪNG SỦA NỮA NHA CÚN CON)
A = |x - 1| + |x + 5| + (x - 2)2 + 2017
A = |x - 1| + |x + 5| + |(x - 2)2| + 2017
A = |x - 1| + |x + 5| + |x2 + 4 - 4x| + 2017
Áp dụng bđt |a| + |b| + |c| \(\ge\)|a+b+c| ta có:
A = |x - 1| + |x + 5| + |x2 + 4 - 4x| + 2017 \(\ge\)|x - 1 + x + 5 + x2 + 4 - 4x| + 2017
A\(\ge\) |x2 - 2x + 8| + 2017
A \(\ge\) |x2 - x - x + 1 + 7| + 2017
A\(\ge\) |(x - 1)2 + 7| + 2017
A\(\ge\) (x - 1)2 + 2024
Dấu "=" xảy ra khi x - 1 \(\ge\)0; x + 5 \(\ge\)0
=> x \(\ge\)1; x \(\ge\)-5
=> x \(\ge\)1
Vậy GTNN của A là 2024 khi x = 1
\(A=2\left|x+1\right|-2x-4\)đạt GTNN <=> \(2\left|x+1\right|\)có giá trị nhỏ nhất
Mả \(\left|x+1\right|\ge0\forall x\in R\Rightarrow x+1=0\Rightarrow x=-1\)
\(\Rightarrow A=2.\left(-1+1\right)-2.\left(-1\right)-4=-2\)
Ta thấy \(2\left|x+1\right|=0\Rightarrow2x=-2\Rightarrow2\left|x+1\right|-2x=2\)
\(\Rightarrow2\left(x+1\right)-2x=2\Leftrightarrow2x+2-2x=2\)\(\Rightarrow x=1\)
Vậy \(x\in\left\{1;-1\right\}\)thì \(A\)có GTNN.
\(A=|x+1|+5\ge5\forall x\)
=> Min A = 5 tại \(|x+1|=0\Rightarrow x=-1\)
\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\)
Ta có: \(x^2+3\ge3\forall x\)
Min x2 + 3 = 3 tại x = 0
Khi đó: Max B = 1+ 12/3 = 5 tại x = 0
=.= hk tốt!!
|x+1 lớn hơn hoặc bằng 0
=> |x+1|+5 lớn hơn hoặc bằng 5
Dấu = xảy ra khi x+1=0 <=> x=-1
Vậy Min A = 5 khi x=-1
A= IxI+1
Do IxI > 0 với mọi x
=> IxI+1 > 1
=> Min A = 1 <=> x=0
B=Ix+1I +3
Do Ix+1I > 0 với mọi x
=> Ix+1I +3 >3
=> Min B = 3 <=> x=-1
( Click đúng và kết bạn với mk nha )