Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne1\\y\ne-2\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}\dfrac{3}{x-1}-\dfrac{2}{y+2}=4\\\dfrac{2x}{x-1}+\dfrac{1}{y+2}=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x-1}-\dfrac{2}{y+2}=4\\\dfrac{2x-2+2}{x-1}+\dfrac{1}{y+2}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x-1}-\dfrac{2}{y+2}=4\\\dfrac{2}{x-1}+\dfrac{1}{y+2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{x-1}-\dfrac{4}{y+2}=8\\\dfrac{6}{x-1}+\dfrac{3}{y+2}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-7}{y+2}=-1\\\dfrac{6}{x-1}+\dfrac{3}{y+2}=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+2=7\\\dfrac{6}{x-1}+\dfrac{3}{7}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\\dfrac{6}{x-1}=\dfrac{60}{7}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=\dfrac{7}{10}\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{17}{10}\left(nhận\right)\\y=5\left(nhận\right)\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{17}{10};5\right)\)
Câu 2:
a) Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=3x+m^2-1\)
\(\Leftrightarrow x^2-3x-m^2+1=0\)
\(\Delta=\left(-3\right)^2-4\cdot1\cdot\left(-m^2+1\right)\)
\(=9-4\left(-m^2+1\right)=9+4m^2-4=4m^2+5>0\forall m\)
Vậy: (d) luôn cắt (P) tại hai điểm phân biệt với mọi m
1. vẽ hình
y ' = 2X =0 => X = 0 , tự vẽ
2. ta có hệ số góc k = Y'(2) =4
KL : K=4 THỎA YÊU CẦU ĐỀ BÀI
Câu 1:
a) Ta có: \(x^4+3x^2-4=0\)
\(\Leftrightarrow x^4+4x^2-x^2-4=0\)
\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
mà \(x^2+4>0\forall x\)
nên \(x^2-1=0\)
\(\Leftrightarrow x^2=1\)
hay \(x\in\left\{1;-1\right\}\)
Vậy: S={1;-1}
Câu 1:
b) Ta có: \(\left\{{}\begin{matrix}x+2y=5\\x-5y=-9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7y=14\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=5-2y=1\end{matrix}\right.\)
Vậy: (x,y)=(1;2)
Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-2x-m+2=0\)
\(\Delta'=1-\left(-m+2\right)=m+3\)
Để (P) cắt (d) tại 2 điểm pb khi m > -3
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m+2\end{matrix}\right.\)
Ta có \(\left(x_1-x_2\right)^2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)
Thay vào ta được \(4+4\left(m-2\right)=4\Leftrightarrow4m-4=4\Leftrightarrow m=2\)(tm)
\(\left\{{}\begin{matrix}\dfrac{9}{x+1}-6y=-3\\\dfrac{10}{x+1}+6y=22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{19}{x+1}=-19\\y=\dfrac{\dfrac{3}{x+1}+1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-2\left|y-3\right|=2\\x+2\left|y-3\right|=12\end{matrix}\right.\) \(\Rightarrow7x=14\Rightarrow x=2\)
Thay vào pt dưới: \(2+2\left|y-3\right|=12\Rightarrow\left|y-3\right|=5\Rightarrow\left[{}\begin{matrix}y=8\\y=-2\end{matrix}\right.\)
b/ Điểm có hoành độ \(x=2\Rightarrow y=2^2=4\Rightarrow\left(2;4\right)\)
Gọi đường thẳng d có pt \(y=kx+b\)
Do d qua \(\left(2;4\right)\Rightarrow4=2k+b\Rightarrow b=4-2k\)
Phương trình d: \(y=kx+4-2k\)
Phương trình hoành độ giao điểm d và (P):
\(x^2=kx+4-2k\Leftrightarrow x^2-kx+2k-4=0\) (1)
\(\Delta=k^2-4\left(2k-4\right)=k^2-8k+16=\left(k-4\right)^2\)
Để d tiếp xúc (P) \(\Leftrightarrow\left(1\right)\) có nghiệm kép \(\Leftrightarrow\Delta=0\)
\(\Rightarrow\left(k-4\right)^2=0\Rightarrow k=4\)