K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020
https://i.imgur.com/iX7y3qX.jpg
30 tháng 3 2020
https://i.imgur.com/GMDpx0f.jpg
21 tháng 9 2019

a) \(\frac{2x}{x+2}+\frac{x+2}{2x}=2\)

\(\Leftrightarrow4x^2+\left(x+2\right)^2=4x\left(x+2\right)\)

\(\Leftrightarrow5x^2+4x+4=4x^2+8x\)

\(\Leftrightarrow5x^2+4x+4-4x^2-8x=0\)

\(\Leftrightarrow x^2-4x+4=0\)

\(\Leftrightarrow x^2-2.x.2+2^2=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

\(\Rightarrow x=2\)

bach nhac lam Xl nha đến đây -----> bí

1 tháng 1 2020

Akai Haruma, No choice teen, Arakawa Whiter, HISINOMA KINIMADO, tth, Nguyễn Việt Lâm, Phạm Hoàng Lê Nguyên, @Nguyễn Thị Ngọc Thơ

Mn giúp em vs ạ! Thanks trước!

a) \(\left\{{}\begin{matrix}x\ge0\\-\sqrt{x+7}< 0\\-5x-4\ne0\\-3x+2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x+7>0\\-5x\ne4\\-3x\ne-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>-7\\x\ne\frac{-4}{5}\\x\ne\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne\frac{2}{3}\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}x\ge0\\x+4\ne0\\x-2\ge0\\-2x-10\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne-4\\x\ge2\\-2x\ne10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne-5\end{matrix}\right.\Leftrightarrow x\ge2\)

c) \(\left\{{}\begin{matrix}x\ge0\\-x-3\ne0\\2x+3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne-3\\x\ne-\frac{3}{2}\end{matrix}\right.\Leftrightarrow x\ge0\)

d) \(\left\{{}\begin{matrix}2x-7\ge0\\x\ge0\\3x-4\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{7}{2}\\x\ge0\\x\ne\frac{4}{3}\\x\ne3\end{matrix}\right.\Leftrightarrow x\ge\frac{7}{2}\)

4 tháng 8 2020

em cảm ơn nhiều ạ

24 tháng 6 2019

a,ĐKXĐ \(x\ne-1;-\frac{1}{2}\)

Ta thấy x=0 không là nghiệm của PT

Xét \(x\ne0\)

Khi đó PT 

<=> \(\frac{2}{6x-1+\frac{3}{x}}+\frac{5}{4x+5+\frac{2}{x}}+\frac{1}{2x+3+\frac{1}{x}}=\frac{1}{3}\)

Đặt \(2x+\frac{1}{x}=a\)

=> \(\frac{2}{3a-1}+\frac{5}{2a+5}+\frac{1}{a+3}=\frac{1}{3}\)

<=>  \(3\left(25a^2+75a+10\right)=6a^3+31a^2+34a-15\)

<=> \(6a^3-44a^2-191a-45=0\)

Xin lỗi đến đây tớ ra nghiệm không đẹp 

24 tháng 6 2019

c, \(x^2+\frac{9x^2}{\left(x+3\right)^2}=7\)   ĐKXĐ \(x\ne-3\)

<=> \(\left(x-\frac{3x}{x+3}\right)^2+2.\frac{3x^2}{x+3}=7\)

<=> \(\left(\frac{x^2}{x+3}\right)^2+6.\frac{x^2}{x+3}-7=0\)

<=> \(\left(\frac{x^2}{x+3}+7\right)\left(\frac{x^2}{x+3}-1\right)=0\)

<=> \(\orbr{\begin{cases}x^2+7x+21=0\\x^2-x-3=0\end{cases}}\)

\(S=\left\{\frac{1\pm\sqrt{13}}{2}\right\}\)thỏa mãn ĐKXĐ