\(\frac{2}{1.3}\)+ \(\frac{2}{3.5}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2019

A = \(\frac{ }{\frac{\frac{100}{101}}{ }}\)

4 tháng 4 2019

\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(A=1-\frac{1}{101}\)

\(A=\frac{100}{101}\)

23 tháng 1 2017

a, \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\)

=2.(\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\))

=\(2.\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

=\(\frac{2}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{100}{101}\)

b, \(\frac{5}{1.3}+\frac{5}{3.5}+...+\frac{5}{99.101}\)

=\(5.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)

=\(5.\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

=\(\frac{250}{101}\)

\(=\frac{5}{2}.\frac{100}{101}\)

3 tháng 5 2019

a,21.321.3+23.523.5+25.725.7+....+299.101

=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\)

=>\(\frac{1}{1}-\frac{1}{101}\)

=>\(\frac{100}{101}\)

b,

51.351.3+53.553.5+55.755.7+....+599.101

=>\(\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{99.101}\right)\)

=>\(\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\right)\)

=>\(\frac{5}{2}\left(\frac{1}{1}-\frac{1}{101}\right)\)

=>\(\frac{5}{2}.\frac{100}{101}\)

=>\(\frac{250}{101}\)

2 tháng 6 2016

a) =1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101 

=1-1/101 

=100/101 

b) =(2/1.3+2/3.5+2/5.7+...+2/99.101).2,5 

=(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101).2,5 

=(1-1/101).2,5

=100/101.2,5 

=250/101 

dấu / là phần nhé. bạn có thể xem bài có dấu phần ở : Câu hỏi của Nguyễn Thị Hoài Anh 

2 tháng 6 2016

A)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

=1-\(\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

=1-\(\frac{1}{101}\)

=\(\frac{100}{101}\)

B) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{1}{99.101}\)

=5.(\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\))

=5.\(\frac{2}{2}.\)(\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\))

=5.\(\frac{1}{2}\).(\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{99.101}\))

=5.\(\frac{1}{2}\).(1-\(\frac{1}{3}\)+\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

=5.\(\frac{1}{2}\).(1-\(\frac{1}{101}\))

=\(\frac{5}{2}.\frac{100}{101}=\frac{250}{100}\)

Chúc bạn học tốtleuleu

8 tháng 5 2017

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{101}\right)\)

\(A=\frac{1}{2}.\frac{100}{101}\)

\(A=\frac{50}{101}\)

\(A=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+...+\frac{3^2}{340}\)

\(A=\frac{3^2}{2.5}+\frac{3^2}{5.8}+\frac{3^2}{8.11}+...+\frac{3^2}{17.20}\)

\(A=\frac{3^2}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{17.20}\right)\)

\(A=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\)

\(A=3\left(\frac{1}{2}-\frac{1}{20}\right)\)

\(A=3.\frac{9}{20}\)

\(A=\frac{27}{20}\)

k nhá bn!

8 tháng 5 2017

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{5}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(2A=1-\frac{1}{101}\)

\(2A=\frac{100}{101}\)

\(\Rightarrow A=\frac{50}{101}\)

\(A=\frac{3^2}{10}+\frac{3^2}{40}+\frac{3^2}{88}+...+\frac{3^2}{340}\)

\(A=\frac{3^2}{2.5}+\frac{3^2}{5.8}+\frac{3^2}{8.11}+...+\frac{3^2}{17.20}\)

\(\Rightarrow A=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{17.20}\right)\)

\(A=3\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\)

\(A=3\left(\frac{1}{2}-\frac{1}{20}\right)\)

\(A=3.\frac{9}{20}\)

\(A=\frac{27}{20}\)

4 tháng 5 2016

 nhung ma ko cothoi gian giai

4 tháng 5 2016

\(S1=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)

\(S1=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)

\(S2=\frac{5}{1.3}+\frac{5}{3.5}+....+\frac{5}{99.101}\)

\(S2=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{101}\right)=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{250}{101}\)

28 tháng 4 2017

\(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+...+\(\frac{2}{99.101}\)

=\(\frac{1}{2}\).(\(\frac{1}{1}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+...+\(\frac{1}{99}\)-\(\frac{1}{101}\)

=\(\frac{1}{2}\).(\(\frac{1}{1}\)-\(\frac{1}{101}\))

=\(\frac{1}{2}\).(\(\frac{101}{101}\)-\(\frac{1}{101}\))

=\(\frac{1}{2}\).\(\frac{100}{101}\)

=\(\frac{1.50}{1.101}\)

=\(\frac{50}{101}\)

20 tháng 3 2017

\(D=\frac{2}{1.3}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

20 tháng 3 2017

đúng rùi

7 tháng 5 2016

\(a,=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

\(b,=\frac{5}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)

7 tháng 5 2016

a,\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)=\frac{2}{2}.\left(\frac{1}{1}-\frac{1}{100}\right)=1.\frac{99}{100}=\frac{99}{100}\)

10 tháng 7 2015

\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)


\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)

2 tháng 4 2017

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.100}=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)=1-\frac{1}{101}=\frac{100}{101}\)\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}=\frac{2}{1.3}.\frac{5}{2}+\frac{2}{3.5}.\frac{5}{2}+\frac{2}{5.7}.\frac{5}{2}+...+\frac{2}{99.101}.\frac{5}{2}=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)