\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{200}\)

Tính A

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2019

1) Tính C

\(C=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+....+\frac{n-1}{n!}\)

\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{n-1}{n!}\)

\(=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\)

\(=1-\frac{1}{n!}\)

9 tháng 11 2019

3) a) Ta có : \(P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)

\(=\frac{1}{101}+\frac{1}{102}+....+\frac{1}{199}+\frac{1}{200}\left(đpcm\right)\)

11 tháng 9 2017

\(B=\frac{1}{199}+\frac{2}{198}+...+\frac{199}{1}\)

\(=1+\frac{1}{199}+1+\frac{2}{198}+...+\frac{199}{1}+1-199\)

\(=200+\frac{200}{2}+...+\frac{200}{199}-199\)

\(=1+\frac{200}{2}+...+\frac{200}{199}\)

\(=200\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}}{200\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)}=\frac{1}{200}\)

22 tháng 1 2020

B = \(\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}\)

\(=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+199\)

\(=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+...+\left(\frac{198}{2}+1\right)+1\)

(từ 1 đến 198 có 198 số hạng nên còn 1 số 1)

\(=\frac{200}{199}+\frac{200}{198}+...\frac{200}{2}+\frac{200}{200}\)

\(=200\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{\text{4}}+...+\frac{1}{200}\right)=200A\)

=> B = 200A => \(\frac{A}{B}=\frac{1}{200}\)

Vậy \(\frac{A}{B}=\frac{1}{200}\)

2 tháng 1 2017

\(B=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

\(\rightarrow\frac{A}{B}=\frac{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}^2}{\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)}=\frac{1}{\frac{1}{4}}=4\)

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm

18 tháng 1 2016

thật lòng xin lỗi bạn mình mới học lớp 5

18 tháng 1 2016

tick mình đủ 20 với 

4 tháng 9 2020

              Bài làm :

a)\(=-\frac{3}{5}+\frac{28}{5}\times\frac{9}{14}=-\frac{3}{5}+\frac{18}{5}=3\)

b)\(=\frac{55}{126}+\frac{5}{42}+\frac{4}{9}=1\)

c)\(=-\frac{51}{13}-\frac{27}{13}=-6\)

d)\(=\frac{7}{3}-11\frac{1}{4}\times\frac{2}{15}=\frac{7}{3}-\frac{3}{2}=\frac{5}{6}\)

e)\(=1\times\frac{8}{3}\times0,25=\frac{2}{3}\)

25 tháng 1 2016

 

\(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+..+\frac{1}{100^2}=\frac{1}{\left(2.2\right)^2}+\frac{1}{\left(2.3\right)^2}+\frac{1}{\left(2.4\right)^2}+..+\frac{1}{\left(2.100\right)^2}\)

\(B=\frac{1}{2^2.2^2}+\frac{1}{2^2.3^2}+\frac{1}{2^2.4^2}+..+\frac{1}{2^2.100^2}=\frac{1}{2^2}.\frac{1}{2^2}+\frac{1}{2^2}.\frac{1}{3^2}+\frac{1}{2^2}.\frac{1}{4^2}+..+\frac{1}{2^2}.\frac{1}{100^2}\)

\(=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)=\frac{1}{4}.A\)

\(=>\frac{A}{B}=\frac{A}{\frac{A}{4}}=4\)