K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

\(25.\left(-\frac{1}{5}\right)^3+\frac{1}{5}-2.\left(-\frac{1}{2}\right)^2-\frac{1}{3}\)

\(\Leftrightarrow25.\left(-\frac{1}{5}\right)^3-2.\left(-\frac{1}{2}\right)^2+\frac{1}{5}-\frac{1}{2}\)

\(\Leftrightarrow-\frac{1}{5}-2.\left(-\frac{1}{2}\right)^2+\frac{1}{5}-\frac{1}{2}\)

\(\Leftrightarrow-\frac{1}{5}+\frac{1}{5}-2\left(-\frac{1}{2}\right)^2-\frac{1}{2}\)

\(\Leftrightarrow-2.\left(-\frac{1}{2}\right)^2-\frac{1}{2}\)

\(\Leftrightarrow-\frac{1}{2}-\frac{1}{2}\)

\(\Leftrightarrow\frac{-1-1}{2}\)

\(\Rightarrow-1\)

26 tháng 10 2019

b) \(\left(\frac{2}{3}x-1\right).\left(\frac{3}{4}x+\frac{1}{2}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\frac{2}{3}x-1=0\\\frac{3}{4}x+\frac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{2}{3}x=1\\\frac{3}{4}x=-\frac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1:\frac{2}{3}\\x=\left(-\frac{1}{2}\right):\frac{3}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=-\frac{2}{3}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{3}{2};-\frac{2}{3}\right\}.\)

c) \(x:\frac{9}{14}=\frac{7}{3}:x\)

\(\Rightarrow\frac{x}{\frac{19}{4}}=\frac{\frac{7}{3}}{x}\)

\(\Rightarrow x.x=\frac{7}{3}.\frac{19}{4}\)

\(\Rightarrow x.x=\frac{133}{12}\)

\(\Rightarrow x^2=\frac{133}{12}\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{\frac{133}{12}}\\x=-\sqrt{\frac{133}{12}}\end{matrix}\right.\)

Vậy \(x\in\left\{\sqrt{\frac{133}{12}};-\sqrt{\frac{133}{12}}\right\}.\)

d) \(\left(3x-1\right)^{10}=\left(3x-1\right)^{20}\)

\(\Rightarrow\left(3x-1\right)^{10}-\left(3x-1\right)^{20}=0\)

\(\Rightarrow\left(3x-1\right)^{10}.\left[1-\left(3x-1\right)^{10}\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}\left(3x-1\right)^{10}=0\\1-\left(3x-1\right)^{10}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x-1=0\\\left(3x-1\right)^{10}=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x=1\\3x-1=\pm1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1:3\\3x-1=1\\3x-1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\3x=2\\3x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=\frac{2}{3}\\x=0\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{1}{3};\frac{2}{3};0\right\}.\)

Chúc bạn học tốt!

27 tháng 10 2019

Mơn bạn nhathanghoa

16 tháng 12 2021

\(2^{x+1}=4^7:8^3\\ \Rightarrow2^{x+1}=2^{14}:2^9\\ \Rightarrow2^{x+1}=2^5\\ \Rightarrow x+1=5\\\Rightarrow x=4\)

22 tháng 3 2022

mọi người ơi giúp em vs ạ , e đang rất cần 

 

23 tháng 3 2022

\(1+2+...+n=\dfrac{\left(\dfrac{n-1}{1}+1\right).\left(n+1\right)}{2}=\dfrac{n\left(n+1\right)}{2}\)

\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)

\(=3\left(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+...+2022}\right)\)

\(=3\left(\dfrac{1}{\dfrac{2.\left(2+1\right)}{2}}+\dfrac{1}{\dfrac{3.\left(3+1\right)}{2}}+...+\dfrac{1}{\dfrac{2022.\left(2022+1\right)}{2}}\right)\)

\(=3\left(\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{2022.2023}\right)\)

\(=3.2.\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2022.2023}\right)\)

\(=6.\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)

\(=6.\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)\)

\(=6.\dfrac{2021}{4046}=3.\dfrac{2021}{2023}=\dfrac{6063}{2023}=\dfrac{18189}{6069}\)

\(\dfrac{10}{3}=\dfrac{20230}{6069}>\dfrac{18189}{6069}=M\)

 

3 tháng 10 2016

quá dể k đi mình làm cho