Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\left(\dfrac{9}{25}-2.18\right):\left(3\dfrac{4}{5}+0,2\right)\)
\(=\left(\dfrac{9}{25}-36\right):\left(\dfrac{19}{5}+0,2\right)\)
\(=-\dfrac{891}{25}:4\)
\(=-\dfrac{891}{100}\)
b,\(\dfrac{5^4.20^4}{25^5.4^5}\)
\(=\dfrac{5^4.20^4}{\left(5^2\right)^5.\left(2^2\right)^5}\)
\(=\dfrac{5^4.20^4}{5^{10}.2^{10}}\)
\(=\dfrac{20^4}{5^6.2^{10}}\)
a/
Theo đề,ta có:
+/ \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\)
+/\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)\(\left(2\right)\)
Từ (1) và (2), ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{28}{-19}\)
Do đó:
+/ \(\dfrac{x}{8}=\dfrac{28}{-19}\Rightarrow x=-\dfrac{224}{19}\)
+/\(\dfrac{y}{12}=\dfrac{28}{-19}\Rightarrow y=-\dfrac{336}{19}\)
+/\(\dfrac{z}{15}=\dfrac{28}{-19}\Rightarrow z=-\dfrac{420}{19}\)
Vậy: + \(x=-\dfrac{224}{19}\)
+ \(y=-\dfrac{336}{19}\)
+ \(z=-\dfrac{420}{19}\)
a,x2=y3,y4=z5x2=y3,y4=z5và x-y-z=28
Có \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\)
=>\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng tính chất DTSBN có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)=\(\dfrac{x-y-z}{8-12-15}=\dfrac{-28}{19}\)
=> x=\(\dfrac{-224}{19}\)
y=\(\dfrac{-336}{19}\)
z=\(\dfrac{-420}{19}\)
a) Vì |x - 3,5| ≥ 0∀x
|4,5 - y| ≥ 0∀y
=> |x - 3,5| + |4,5 - y| ≥ 0 ∀x,y
Dấu " = " xảy ra khi và chỉ khi |x - 3,5| = 0 hoặc |4,5 - y| = 0 => x = 3,5 hoặc y = 4,5
Vậy GTNN = 0 khi x = 3,5;y = 4,5
b) |x - 2| ≥ 0 ∀x
|3 - y| ≥ 0 ∀y
=> |x - 2| + |3 - y| ≥ 0 ∀x,y
Dấu " = " xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x-2=0\\3-y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Vậy GTNN = 0 <=> x = 2,y = 3
c) \(\left|x+\frac{2}{3}\right|+\left|y-\frac{3}{4}\right|+\left|z-5\right|=0\)
Vì \(\left\{{}\begin{matrix}\left|x+\frac{2}{3}\right|\ge0\forall x\\\left|y-\frac{3}{4}\right|\ge0\forall y\\\left|z-5\right|\ge0\forall z\end{matrix}\right.\)
=> \(\left|x+\frac{2}{3}\right|+\left|y-\frac{3}{4}\right|+\left|z-5\right|\ge0\forall x,y,z\)
Dấu " = " xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\left|x+\frac{2}{3}\right|=0\\\left|y-\frac{3}{4}\right|=0\\\left|z-5\right|=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=-\frac{2}{3}\\x=\frac{3}{4}\\z=5\end{matrix}\right.\)
Vậy GTNN = 0 khi x = -2/3,y = 3/4,z = 5
Bài cuối tự làm :)))
a) C = 20013 - |5−2x|
do \(-\left|5-2x\right|\le0\forall x\)
=> 20013-\(\left|5-2x\right|\le20013\)
=>A≤20013
=> GTLN C =20013 khi 5-2x=0
=> 2x=5
=> x=\(\dfrac{5}{2}\)
vậy GTLN C = 20013 khi x=\(\dfrac{5}{2}\)
b) D = 7 - \(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\)
do \(-\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le0\forall x\)
=> 7-\(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le7\)
=> D≤7
=> GTLN D =7 khi \(\dfrac{2}{3}+\dfrac{1}{4}x=0\)
=> x=-\(\dfrac{8}{3}\)
1) Tính
a) 253 : 52 = (52)3 : 52 = 56 : 52 = 54 = 625
\(b)\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^6=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^6=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{12}=\left(\dfrac{3}{7}\right)^9\) d) 9 . 32 . \(\dfrac{1}{81}\) . 32 = 32 . 32 . \(\dfrac{1}{3^4}\) . 32 = 9
2) Tìm x thuộc Q, biết:
a) 3x + 2 = 27
=> 3x + 2 = 33
x + 2 = 3
x = 3 - 2
x = 1
b) \(\left(\dfrac{1}{2}x-3\right)^4=81\)
\(\Rightarrow\left(\dfrac{1}{2}x-3\right)^4=3^4\)
\(\dfrac{1}{2}x-3=3^{ }\)
\(\dfrac{1}{2}x=3+3\)
\(\dfrac{1}{2}x=9\)
\(x=9:\dfrac{1}{2}\)
\(x=18\)
c) \(\left(x-\dfrac{1}{2}\right)^3=-27\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\left(-3\right)^3\)
\(x-\dfrac{1}{2}=-3\)
\(x=-3+\dfrac{1}{2}\)
\(x=\dfrac{-5}{2}\)
d) 5 . 5x + 1 = 125
5x + 1 = 125 : 5
5x + 1 = 25
5x + 1 = 52
x + 1 = 2
x = 2 - 1
x = 1.
a/ \(27^x.9^x=9^{27}:81\)
\(\Leftrightarrow3^{3x}.3^{2x}=3^{54}:3^4\)
\(\Leftrightarrow3^{2x+3x}=3^{50}\)
\(\Leftrightarrow2x+3x=50\)
\(\Leftrightarrow5x=50\)
\(\Leftrightarrow x=10\)
Vậy ...
\(a.27^x.9^x=9^{27}:81\)
\(\left(3^3\right)^x.\left(3^2\right)^x=\left(3^2\right)^{27}:\left(3^2\right)^2\)
\(3^{3x}.3^{2x}=3^{50}\)
\(3^{3x+2x}=3^{50}\)
\(\Rightarrow3x+2x=50\)
\(x\left(3+2\right)=50\)
\(x=50:5=10\)
Vậy\(x=10\)
\(b.\left(\dfrac{12}{25}\right)^x=\left(\dfrac{5}{3}\right)^{-2}-\left(-\dfrac{3}{5}\right)^4\)
\(\left(\dfrac{12}{25}\right)^x=\dfrac{9}{25}-\dfrac{81}{625}\)
\(\left(\dfrac{12}{25}\right)^x=\dfrac{144}{625}\)( Đề sai )
a.\(3^{x-1}=243\)
\(3^x:3^1=243\)
\(3^x=729\)
\(\Leftrightarrow3^6=729\)
\(\Leftrightarrow x=6\)
b.\(\left(\dfrac{2}{3}\right)^{x+1}=\dfrac{8}{4}\)
\(\left(\dfrac{2}{3}\right)^x.\left(\dfrac{2}{3}\right)=\dfrac{8}{4}\)
\(\left(\dfrac{2}{3}\right)^x=3\)
Câu b tính đến đây rồi không mò đc x nữa.
a) \(\dfrac{x}{12}-\dfrac{5}{6}=\dfrac{1}{12}\Rightarrow\dfrac{x}{12}=\dfrac{1}{12}+\dfrac{10}{12}\Rightarrow\dfrac{x}{12}=\dfrac{11}{12}\Rightarrow x=11\)
b) \(\dfrac{2}{3}-1\dfrac{4}{15}x=\dfrac{-3}{5}\Rightarrow\dfrac{10}{15}-\dfrac{19}{15}x=\dfrac{-3}{5}\Rightarrow\dfrac{-19}{15}x=\dfrac{-13}{15}\Rightarrow x=\dfrac{13}{19}\)
c) \(\dfrac{\left(-3\right)^x}{81}=-27\Rightarrow\left(-3\right)^x=-2187\Rightarrow x=7\)
d) \(2^{x-1}=16\Rightarrow x-1=4\Rightarrow x=5\)
e) \(\left(x-1\right)^2=25\Rightarrow x-1=5\Rightarrow x=6\)
g) \(\left(3x-\dfrac{1}{4}\right)\left(x+\dfrac{1}{2}\right)=0\Rightarrow\left[{}\begin{matrix}3x-\dfrac{1}{4}=0\Rightarrow x=\dfrac{1}{12}\\x+\dfrac{1}{2}=0\Rightarrow x=\dfrac{-1}{2}\end{matrix}\right.\)
\(a,\Rightarrow\dfrac{\left(-3\right)^x}{\left(-3\right)^4}=\left(-3\right)^3\\ \Rightarrow\left(-3\right)^{x-4}=\left(-3\right)^3\\ \Rightarrow x-4=3\Rightarrow x=7\\ b,Sửa:\left(x-\dfrac{1}{2}\right)^2=25\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=5\\x-\dfrac{1}{2}=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{11}{5}\\x=-\dfrac{9}{5}\end{matrix}\right.\)