\(\sqrt{2\sqrt{3\sqrt{4\: .\: .\: .\: \sqrt{2000}}< \: 3}}\)

b ) cho...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

a) \(ab+bc+ca=1\)\(\Rightarrow\)\(\hept{\begin{cases}a^2b^2+b^2c^2+c^2a^2=1-2abc\left(a+b+c\right)\\\left(a+b+c\right)^2-2=a^2+b^2+c^2\end{cases}}\)

\(A=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{a^2b^2c^2+a^2b^2+b^2c^2+c^2a^2+a^2+b^2+c^2+1}\)

\(A=\sqrt{a^2b^2c^2-2abc\left(a+b+c\right)+\left(a+b+c\right)^2}\)

\(A=\sqrt{\left(abc-a-b-c\right)^2}=\left|abc-a-b-c\right|\)

Do a, b, c là các số hữu tỉ nên \(\left|abc-a-b-c\right|\) là số hữu tỉ 

b) \(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}=1\)

\(B< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+2}}}}=\sqrt{2+2}=2\)

=> \(1< B< 2\) B không là số tự nhiên 

c) câu này có ng làm r ib mk gửi link 

7 tháng 7 2019

à chỗ câu b) mình nhầm tí nhé 

\(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}>1\)

Sửa dấu "=" thành ">" hộ mình 

7 tháng 7 2019

3) Ta có:\(\sqrt{2000}< 2001\)

Áp dụng BĐT AM-GM:

\(\sqrt{1999.\sqrt{2000}}< \sqrt{1999.2001}< \frac{1999+2001}{2}=2000\)

Tương tự ta có:

\(\sqrt{2\sqrt{3\sqrt{4--...\sqrt{1999\sqrt{2000}}}}}< \sqrt{2\sqrt{3\sqrt{4=.\sqrt{1999.2001}}}}< \sqrt{2\sqrt{3\sqrt{4-\sqrt{1998.2000}}}}--< \sqrt{2.4}< 3\)

7 tháng 7 2019

1)

Với ab + bc + ac = 1 có:

\(a^2+1=a^2+ab+ac+bc=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+b\right)\)

\(b^2+1=b^2+bc+ca+ab=b\left(b+c\right)+a\left(b+c\right)=\left(a+b\right)\left(b+c\right)\)

\(c^2+1=c^2+bc+ca+ab=c\left(b+c\right)+a\left(b+c\right)=\left(a+c\right)\left(b+c\right)\)

Do đó: \(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)

\(=\sqrt{\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)}\)

\(=\sqrt{\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2}\)

\(=|\left(a+b\right)\left(a+c\right)\left(b+c\right)|\)

Vì \(a,b,c\in Q\Rightarrow|\left(a+b\right)\left(a+c\right)\left(b+c\right)|\in Q\left(đpcm\right)\)

6 tháng 2 2016

Vì \(a\in\left[-2;5\right]\Rightarrow\left(a+2\right)\left(a-5\right)\le0\Leftrightarrow a^2-3a-10\le0\Leftrightarrow a^2\le3a+10\)(1)

CMTT \(b^2\le3b+10\Rightarrow2b^2\le6b+20\left(2\right)\) ; \(c^2\le3c+10\Leftrightarrow3c^2\le9c+30\)(3)

        Từ (1) (2) và (3) => \(a^2+2b^2+3c^2\le3\left(a+2b+3c\right)+60\le3.2+60=66\)

BĐT đc cm 

6 tháng 2 2016

xin lỗi mình mới học lớp  8

3 tháng 9 2016

Bạn đăng từng bài thôi :)

3 tháng 9 2016

em cx ms lm xong bài kia =))

28 tháng 3 2019

Cosi + Svac-xơ

Có : \(3=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(a+b+c\le3\)

\(\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\le\frac{1}{4-\frac{a+b}{2}}+\frac{1}{4-\frac{b+c}{2}}+\frac{1}{4-\frac{c+a}{2}}\)

\(=-\left(\frac{1}{\frac{a+b}{2}-4}+\frac{1}{\frac{b+c}{2}-4}+\frac{1}{\frac{c+a}{2}-4}\right)\le\frac{-\left(1+1+1\right)^2}{a+b+c-12}=\frac{-9}{3-12}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

1 tháng 5 2020

hơi phiền bn,bn có thẻ chỉ mik k ?

16 tháng 5 2017

Ta có 

\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}\)\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\)\(=\sqrt{\frac{a}{c+a}}.\sqrt{\frac{b}{c+b}}\)\(\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

Tương tự, ta có

\(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{b+ca}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{b+a}\right)}\)

Cộng vế theo vế của 3 bđt ta được đpcm

20 tháng 3 2019

sử dụng bdt bunhiacopxki có đc ko bn

21 tháng 3 2019

\(a^2\sqrt{a}+b^2\sqrt{b}+c^2\sqrt{c}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)

\(=\left(a^2\sqrt{a}+\frac{1}{\sqrt{a}}\right)+\left(b^2\sqrt{b}+\frac{1}{\sqrt{b}}\right)+\left(c^2\sqrt{c}+\frac{1}{\sqrt{c}}\right)\)

\(\ge2a+2b+2c\ge6\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=6\)