Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó;ΔABC=ΔADC
Suy ra: CB=CD
hay ΔCBD cân tại C
c: Xét ΔCBD có
CA là đường trung tuyến
CE=2/3CA
Do đó: E là trọng tâm của ΔCBD
=>DE đi qua trung điểm của BC
a) Ta có: AB < AC
=> ACB < ABC
ABH = 90 - 60 = 30o
b) DAC = DAB = 90 - (A/2) = 90 - 30 = 60o
ABI = 90 - 30 = 60
Xét 2 tam giác vuông AIB và BHA có: AB (chung)
Ta có: BAH = ABD = 60 (cmt)
=> AIB = BHA (ch - gn)
c) Theo câu a), ta có: Tam giác AIB = BHA (ch - gn)
=> AIB = BHA = 60o
=> BEA = 180 - 60 - 60 = 60o
Có: ABE = BEA = EAB = 60
=> Tam giác ABE là tam giác đều.
d) Gọi Bx là tia đối của tia BA
Xét tam giác ADB và tam giác ADC có: AB = AE
EAD = DAB = 30o
Cạnh AD chung.
=> Tam giác ADB = tam giác ADC (c.g.c)
=> DB = DB (1) và góc ABD = góc AED
Do đó:
CBx = CED (cùng kề bù với 2 góc = nhau)
CBx > C
=> DC > DE (2)
Từ (1); (2) => DC > DB
a)
Xét 2 tg ABD và ACD, có
AD cạnh chung
AB=AC (tgABC cân tại A)
góc BAD = góc CAD
=> tg ABD=tg ACD
b)
Trong tgABC, G là trọng tâm và AD là đường phân giác.
Mà trong 1 tg cân đường phân giác trùng lên đường trung tuyến.
Mặt khác thì trọng tâm nằm trên đường trung tuyến.
=> 3 điểm A,D,G nắm trên cùng 1 đoạn thẳng
Hay: 3 điểm A,D,G thẳng hàng
c)
Trong tg cân ABC, có đường phân giác AD
=> AD trùng lên đường trung trực xuất phát từ A
=> AD>AB ( tính chất đường vuông góc với đường xiên)
d)
Ta có: tg ABD vuông tại D (AD là đường trung trực)
=> AD^2 +DB^2 = AB^2 (định lí Py-ta-go)
=>AD^2 +5^2= 13^2 (DB^2=5^2 vì DB=DC=10/2=5)
=>AD^2=13^2-5^2=144=12^2
=> AD=12 (cm)
Mà AG là trọng tâm
=>AG=2/3 AD=8 cm
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
DO đó: ΔAHB=ΔAHC
Suy ra: HB=HC
hay H là trung điểm của BC
b: Xét ΔMAD và ΔMBH có
\(\widehat{MAD}=\widehat{MBH}\)
MA=MB
\(\widehat{AMD}=\widehat{BMH}\)
Do đó:ΔMAD=ΔMBH
Suy ra: AD=BH
hay BH=2,5cm
Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)
hay AH=6(cm)
bạn có biết giải câu c) không ? Nếu giải được thì chỉ giúp mình với
tu ke hinh:
a, xet tam giac ADE va tam giac ADB co : AD chung
goc EAD = goc DAB do AD la pg cua goc A (gt)
AE = AB (gt)
=> tam giac ADE = tam giac ADB (c - g - c)
b, tam giac ADE = tam giac ADB (Cau a)
=> DE = DB (dn) (1)
goc DEA = goc DBA (dn)
goc DEA + goc DEC = 180 (kb)
goc DBA + goc DBF = 180 (kb)
=> goc DEC = goc DBF (2)
xét tam giac DEC va tam giac DBF co : goc CDE = goc FDB (doi dinh) (3)
(1)(2)(3) => tam giac DEC = tam giac DBF (g - c - g)
=> CE = BF
pls help me