Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(4\left(a^2-ab+b^2\right)⋮3\)
\(\Rightarrow\left(2a-b\right)^2+3b^2⋮3\)
\(\Rightarrow\left(2a-b\right)^2⋮3\)
\(\Rightarrow2a-b⋮3\)
\(\Rightarrow\left(2a-b\right)^2⋮9\)
\(\Rightarrow3b^2⋮9\)
\(\Rightarrow b⋮3\)
\(\Rightarrow a⋮3\)
Theo bài ra, ta gọi \(y=x-1,z=x+1\)
\(x^3+y^3+z^3\)
\(=x^3+\left(x-1\right)^3+\left(x+1\right)^3\)
\(=3x^3+6x\)
\(=3\left(x^3-x\right)+9x\)
\(=3x\left(x^2-1\right)+9x\)
\(=3x\left(x-1\right)\left(x+1\right)+9x⋮9\)
B1 :
Áp dụng bđt cosi ta có : a^2/b+c + b+c/4 >= \(2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}\) = 2. a/2 = a
Tương tự b^2/c+a + c+a/4 >= b
c^2/a+b + a+b/4 >= c
=> VT + a+b+c/2 >= a+b+c
=> VT >= a+b+c/2 = VP
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c > 0
k mk nha
a) Gọi tích của năm số nguyên liên tiếp là ; \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\)
Tích của 5 số nguyên liên tiếp thì chia hết cho 3 và 5
Tích 4 số nguyên liên tiếp chia hết cho 4 và 2
Do đó : Tích của 5 số nguyên liên tiếp chia hết cho : 2.3.4.5 = 120
b) \(x^3+7y=y^3+7x\left(1\right)\Leftrightarrow x^3-y^3-7x+7y=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)-7\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2+xy-7\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x^2+xy+y^2-7=0\end{cases}}\)
Mà \(x\ne y\)nên ta xét trường hợp : \(x^2+xy+y^2-7=0\)
\(\Leftrightarrow\left(x^2+y^2\right)+\left(x+y\right)^2=14\)
\(\Rightarrow\left(x+y\right)^2\le14\Rightarrow x+y\le3\)
Do đó, ta sẽ chọn các giá trị x,y trong khoảng \(\left(1;2\right)\)vì x,y>0
Vậy các số nguyên dương phân biệt thoả mãn phương trình là :
\(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)