Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu n = 3k+1 thì n 2 = (3k+1)(3k+1) hay n 2 = 3k(3k+1)+3k+1
Rõ ràng n 2 chia cho 3 dư 1
Nếu n = 3k+2 thì n 2 = (3k+2)(3k+2) hay n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên n 2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2 chia cho 3 dư 1 tức là p 2 = 3 k + 1 do đó p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3
Vậy p 2 + 2003 là hợp số
a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k2 + 2k) + 1 => n2 chia cho 3 dư 1
+) n chia cho 3 dư 2 => n = 3k + 2 => n2 = (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k2 + 4k +1) + 1 => n2 chia cho 3 dư 1
Vậy...
b) p là số nguyên tố > 3 => p lẻ => p2 lẻ => p2 + 2003 chẵn => p2 + 2003 là hợp số
Số chính phương khi chia 3 chỉ dư 0 hoặc 1.
Trường hợp 1:
\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)
Trường hợp 2:
\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)
Trường hợp 3:
\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )
Vậy có đpcm.
Giải:
Giả sử a không ⋮ 3 ➩ b không ⋮ 3
➩\(a^2 - 1 + b^2-1\) ⋮ 3
Mà \(a^2 +b^2\)➩2⋮ 3 (không có thể)
Vậy ➩a và b ⋮ 3.
a﴿ n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2
+﴿ n chia cho 3 dư 1 : n = 3k + 1 => n 2 = ﴾3k +1﴿.﴾3k +1﴿ = 9k 2 + 6k + 1 = 3.﴾3k 2 + 2k﴿ + 1 => n 2 chia cho 3 dư 1
+﴿ n chia cho 3 dư 2 => n = 3k + 2 => n 2 = ﴾3k +2﴿.﴾3k+2﴿ = 9k 2 + 12k + 4 = 3.﴾3k 2 + 4k +1﴿ + 1 => n 2 chia cho 3 dư 1
Vậy...
b﴿ p là số nguyên tố > 3 => p lẻ => p 2 lẻ => p 2 + 2003 chẵn => p 2 + 2003 là hợp số
k minh nha
a) sao lai hinh nhu sai?
p nguyen to chia het cho 3 => p chi co the =3
3 nho hon 9=> 3 chia 9 =0 du 3
dpcm
Câu hỏi này câu a như bị sai đề,
Câu b
p là số nguyên tố lớn hơn 3 nên p không chia hết cho 3 suy ra \(p^2\) chia 3 dư 1.
Suy ra \(p^2+2003\) chia hết cho 3 ( do 2003 chia 3 dư 2)
Vậy \(p^2+2003\) là hợp số.
Lời giải:
a. Vì $p$ nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$.
Nếu $p$ chia $3$ dư $2$, $p$ có dạng $p=3k+2$.
$p+4=3k+6\vdots 3$. Mà $p+4>3$ nên không là số nguyên tố (trái đề)
Do đó $p$ chia $3$ dư $1$
Khi đó: $p+8=3k+1+8=3(k+3)$ chia hết cho $3$. Mà $p+8>3$ nên $p+8$ là hợp số (đpcm)
b.
$\overline{abcd}=1000a+100b+10c+d$
$=1000a+96b+8c+(d+2c+4b)$
$=8(125a+12b+c)+(d+2c+4b)$
Vì $8(125a+12b+c)\vdots 8; d+2c+4b\vdots 8$
$\Rightarrow \overline{abcd}\vdots 8$
Ta có đpcm.
Câu a)
Sử dụng đồng dư.