Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
18/31 giữ nguyên . 181818/313131=18 nhân 10101/31 nhân 10101 = 18/31
18/31=181818/313131
10a=10^2017+10/10^2017+1
10b=10^2018+10/10^2018+1
cậu tự so sánh nhé vậy là dễ rồi
Ta có: \(A=\dfrac{10^{2016}+1}{10^{2017}+1}\Rightarrow10A=\dfrac{10\left(10^{2016}+1\right)}{10^{2017}+1}=\dfrac{10^{2017}+10}{10^{2017}+1}\)
\(=\dfrac{10^{2017}+1+9}{10^{2017}+1}=\dfrac{10^{2017}+1}{10^{2017}+1}+\dfrac{9}{10^{2017}+1}=1+\dfrac{9}{10^{2017}+1}\)
Tương tự ta cũng có: \(10B=1+\dfrac{9}{10^{2018}+1}\)
Lại có: \(10^{2017}< 10^{2018}\Rightarrow10^{2017}+1< 10^{2018}+1\)
\(\Rightarrow\dfrac{1}{10^{2017}+1}>\dfrac{1}{10^{2018}+1}\Rightarrow\dfrac{9}{10^{2017}+1}>\dfrac{9}{10^{2018}+1}\)
\(\Rightarrow1+\dfrac{9}{10^{2017}+1}>1+\dfrac{9}{10^{2018}+1}\Rightarrow10A>10B\Rightarrow A>B\)
Vì \(\frac{a}{b}\) < \(\frac{c}{d}\) nên ad < bc (1)
Xét tích : a(b+d) = ab + ad (2)
b(a+c) = ba + bc (3)
Từ (1);(2);(3) suy ra a(b+d) < b(a+c) do đó \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) (4)
Tương tự ta có : \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\) (5)
Kết hợp (4);(5) ta được \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\)
hay x < z < y
Bài 1 :
a, Ta có :
\(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)
\(\Leftrightarrow ad+ab< bc+ab\)
\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) \(\left(1\right)\)
Mà \(ad< bc\)
\(\Leftrightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Leftrightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\rightarrowđpcm\)
b) \(\dfrac{-1}{3}=\dfrac{-16}{48}< \dfrac{-15}{48};\dfrac{-14}{48};\dfrac{-13}{48}< \dfrac{-12}{48}=\dfrac{-1}{4}\)
Ta thấy :
\(\left\{{}\begin{matrix}A=\dfrac{10^{2017}+1}{10^{2016}+1}>1\\B=\dfrac{10^{2018}+1}{10^{2017}+1}>1\end{matrix}\right.\)
Áp dụng tính chất \(\dfrac{a}{b}>1\Leftrightarrow\dfrac{a+m}{b+m}\) ta có :
\(B=\dfrac{10^{2018}+1}{10^{2017}+1}>\dfrac{10^{2018}+1+9}{10^{2017}+1+9}=\dfrac{10^{2018}+10}{10^{2017}+10}=\dfrac{10\left(10^{2017}+1\right)}{10\left(10^{2016}+1\right)}=\dfrac{10^{2017}+1}{10^{2016}+1}=A\)
\(\Leftrightarrow B>A\)