Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\)
\(=\left[-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right]\cdot\left(\sqrt{2}-\sqrt{5}\right)\)
\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)
\(=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)
\(=-\left(2-5\right)\)
\(=-\left(-3\right)\)
\(=3\)
b) Ta có:
\(x^2-x\sqrt{3}+1\)
\(=x^2-2\cdot\dfrac{\sqrt{3}}{2}\cdot x+\left(\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)
\(=\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)
Mà: \(\left(x-\dfrac{\sqrt{3}}{2}\right)^2\ge0\forall x\) nên
\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)
Dấu "=" xảy ra:
\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{\sqrt{3}}{2}\)
Vậy: GTNN của biểu thức là \(\dfrac{1}{4}\) tại \(x=\dfrac{\sqrt{3}}{2}\)
a)
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\\ =\left(-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =\left(-\sqrt{2}-\sqrt{5}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}^2-\sqrt{5}^2\right)\\ =-\left(2-5\right)\\ =-\left(-3\right)\\ =3\)
Bài 1 :
a )\(A=\frac{3-\sqrt{3}}{\sqrt{3}-1}+\frac{\sqrt{35}-\sqrt{15}}{\sqrt{5}}-\sqrt{28}\)
\(A=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\frac{\sqrt{5}\left(\sqrt{7}-\sqrt{3}\right)}{\sqrt{5}}-\sqrt{28}\)
\(A=\sqrt{3}+\sqrt{7}-\sqrt{3}-\sqrt{28}\)
\(A=\sqrt{7}-\sqrt{28}\)
\(A=\sqrt{7}-2\sqrt{7}=-\sqrt{7}\)
Vậy \(A=-\sqrt{7}\)
b)\(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\left(a,b>0;a\ne b\right)\)
\(B=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\frac{\sqrt{a}+\sqrt{b}}{a-b}\)
\(B=\left(\sqrt{a}+\sqrt{b}\right).\frac{a-b}{\sqrt{a}+\sqrt{b}}\)
\(B=a-b\)
Vậy \(B=a-b\left(a,b>0;a\ne b\right)\)
_Minh ngụy_
Bài 2 :
a )\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\left(x>0\right)\)
\(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
Vậy \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)
b) \(B=\frac{\sqrt{x}-1}{\sqrt{x}+1}\left(x>0\right)\)
Ta có : \(B>0\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}+1}>0\)
Vì : \(\sqrt{x}\ge0\forall x\Rightarrow\)để \(B>O\)cần \(\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)( thỏa mãn \(x>0\))
Vậy \(x>1\)thì \(B>0\)
_Minh ngụy_
1: Rút gọn biểu thức
a) Ta có: \(5\sqrt{\frac{1}{5}}+\frac{1}{3}\sqrt{45}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=5\cdot\frac{1}{\sqrt{5}}+\frac{1}{3}\cdot3\sqrt{5}+\left|2-\sqrt{5}\right|\)
\(=\sqrt{5}+\sqrt{5}+\sqrt{5}-2\)(Vì \(2< \sqrt{5}\))
\(=3\sqrt{5}-2\)
b) Ta có: \(\frac{5+\sqrt{5}}{5-\sqrt{5}}+\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
\(=\frac{\left(5+\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}+\frac{\left(5-\sqrt{5}\right)^2}{\left(5+\sqrt{5}\right)\left(5-\sqrt{5}\right)}\)
\(=\frac{30+10\sqrt{5}+30-10\sqrt{5}}{25-5}\)
\(=\frac{60}{20}=3\)
2:
Sửa đề: \(A=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
a) Ta có: \(A=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{x-1-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)
\(=\frac{\sqrt{x}-2}{3\sqrt{x}}\)
b) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;4;\frac{14\pm6\sqrt{5}}{4}\right\}\end{matrix}\right.\)
Để \(A>\frac{1}{6}\) thì \(A-\frac{1}{6}>0\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}-\frac{1}{6}>0\)
\(\Leftrightarrow\frac{2\sqrt{x}-4}{6\sqrt{x}}-\frac{\sqrt{x}}{6\sqrt{x}}>0\)
\(\Leftrightarrow\frac{\sqrt{x}-4}{6\sqrt{x}}>0\)
mà \(6\sqrt{x}>0\forall x\) thỏa mãn ĐKXĐ
nên \(\sqrt{x}-4>0\)
\(\Leftrightarrow\sqrt{x}>4\)
hay x>16
Kết hợp ĐKXĐ, ta được: x>16
Vậy: Để \(A>\frac{1}{6}\)thì x>16
Mình ghi nhầm. \(x=\frac{\sqrt{4+2\sqrt{3}}.\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)nhé
ý a con phân số mk rút gọn ấy nhé tử và mẫu \(\sqrt{5}-1\)
a)
\(=\sqrt{\left(3-\sqrt{5}\right)^2}+\frac{\sqrt{5}\left(\sqrt{5-1}\right)}{\sqrt{5}-1}\)
=\(3-\sqrt{5}+\sqrt{5}=3\)