a) Chứng minh: (ac + bd)2 + (ad – bc)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2021

) Bài 1: Biến đổi tương đương thôi: \((ac+bd)^2+(ad-bc)^2=a^2c^2+b^2d^2+2abcd+a^2d^2+b^2c^2-2abcd\) \(=a^2c^2+b^2d^2+a^2d^2+b^2c^2=(a^2+b^2)(c^2+d^2)\) Ta có đpcm Bài 2: Áp dụng kết quả bài 1: \((a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad-bc)^2\geq (ac+bd)^2\) do \((ad-bc)^2\geq 0\) Dấu bằng xảy ra khi \(ad=bc\Leftrightarrow \frac{a}{c}=\frac{b}{d}\)

^HT^

3 tháng 2 2018

\(VT=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

3 tháng 2 2018

không làm b nhé

7 tháng 5 2020

Ta có \(x^2-\left(7+y\right)x+6+2y=0\Leftrightarrow y\left(x-2\right)=x^2-7x+6\)

Rõ ràng x=2 không thể là nghiệm nên chia cả 2 vế cho x-2 ta được

\(y=\frac{x^2-7x+6}{x-2}=\left(x-5\right)+\frac{-4}{x-2}\)

Do x,y nguyên nên x-2 là Ư(-4) mà \(Ư_{\left(-4\right)}=\left\{-4;-2;-1;1;2;4\right\}\)

ta có bảng

x-2-4-2-1124
x-201346
y0-3-60-36

đối chiếu điều kiện ở đề bài thì các cặp 

(x;y)={(1;0);(0;3);(-2;-6);(6;0);(4;-3);(3;-6)}

16 tháng 12 2018

Bài 1 ( của toán lớp 10 mà )

Ta có : ( P )  đi qua điểm A nên thay x = 4 ; y = 5 vào ( P ) , ta được : 

           5 = a . 42 + b . 4 + c 

          5 = 16a     +  4b   + c 

         -c = 16a + 4b - 5 

   => c = -16a - 4b + 5             ( * )  

( P ) có đỉnh là  I(2;1)  

=> \(\hept{\begin{cases}-\frac{b}{2a}=2\\-\frac{\Delta}{4a}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-b=4a\\-\frac{\left(b^2-4ac\right)}{4a}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\b^2-4ac=-4a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\b^2-4a.\left(-16a-4b+5\right)=-4a\end{cases}}\)   ( c = - 16a -4b + 5 ) mình chứng minh ở trên nhé 

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\\left(-4a\right)^2-4a.\left(-16a-4\left(-4a\right)+5\right)=-4a\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\16a^2+48a^2-48a^2-20a+4a=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\16a^2-16a=0\end{cases}}\) ( ở bước này bạn có thể tính bằng tay hoặc dùng máy tính nha : more 5 - 3 ) 

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\a=1\left(nhan\right);a=0\left(loai\right)\end{cases}}\) ( a = 0 thì loại ; vì trong phương trình bậc 2 thì a phải khác 0 ) 

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=-4.\left(1\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=1\\b=-4\end{cases}}\) 

Thay a = 1 và b = -4 vào phương trình   ( * )  ta được : 

c = -16 . 1 - 4 .( -4 ) +5 = 5 

vậy ( P ) là \(y=x^2-4x+5\)

bảng biến thiên :

 

bạn tự vẽ (P) nha , quá dễ mà 

BÀI 2 : \(\forall x\in R\) có nghĩa là vô số nghiệm 

\(\left(m^2-1\right)x+2m=5x-2v6\)

\(\Leftrightarrow\left(m^2-1\right)x-5x=2v6-2m\)

\(\Leftrightarrow\left(m^2-1-5\right)x=2v6-2m\)

\(\Leftrightarrow\left(m^2-6\right)x=2v6-2m\)

Phương trình có nghiệm \(\forall x\in R\) \(\Leftrightarrow0x=0\)

\(\Leftrightarrow\hept{\begin{cases}m^2-6=0\\2v6-2m=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m=\pm v6\\m=v6\end{cases}}\)

Vậy m = v6 thì phương trình có nghiệm đúng \(\forall x\in R\) ( bởi vì m = v6 và m =+-v6 nên ta chỉ lấy phần chung thôi ,lấy v6 ,loại bỏ -v6)

Bài 3 :

a )

\(\Delta=b^2-4ac\)

\(=\left[-2\left(2m-3\right)\right]^2-4.\left(2m-1\right).\left(2m+5\right)\)

\(=4.\left(4m^2-12m+9\right)-\left(8m-4\right)\left(2m+5\right)\)

\(=16m^2-12m+36-\left(16m^2+40m-8m-20\right)\)

\(=16m^2-12m+36-16m^2-40m+8m+20\)

\(=-44m+56\)

phương trình có nghiệm \(\Leftrightarrow\Delta\ge0\)

\(\Leftrightarrow-44m+56\ge0\)

\(\Leftrightarrow-44m\ge-56\)

\(\Leftrightarrow m\le\frac{14}{11}\)

Vậy \(m\le\frac{14}{11}\) thì phương trình có nghiệm  ( m bé hơn hoặc bằng 14/11 nha ) 

b ) x1 = x2 có nghĩa là nghiệm kép nha  ( có 2 nghiệm phân biệt x1,x2 ; đề bài đang đánh lừa bạn đấy ) 

phương trình có 2 nghiệm x1 = x2 \(\Leftrightarrow\Delta=0\)

\(\Leftrightarrow-44m+56=0\)

\(\Leftrightarrow m==\frac{14}{11}\)

Học tốt !!!!!

                           

\(\Leftrightarrow\hept{\begin{cases}b=-4a\\\orbr{\begin{cases}a=0\\16a-16=0\end{cases}}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=-4a\\\orbr{\begin{cases}a=0\\16a-16=0\end{cases}}\end{cases}}\)

27 tháng 8 2021

a) Ta có : ( ac + bd )2 + ( ad - bc )2 = a2c2 + 2abcd + b2d+ a2d2 - 2abcd + b2c2

= a2c2 + b2d2 + a2d2 + b2c2 = c2( a2 + b2 ) + d2( a2 + b2 ) = ( a2 + b2 )( c2 + d2 )

b) ( viết ngược chiều cho dễ nhìn )

( a2 + b2 )( c2 + d2 ) ≥ ( ac + bd )2

<=> ( ac + bd )2 + ( ad - bc )2 - ( ac + bd )2 ≥ 0

<=> ( ad - bc )2 ≥ 0 ( đúng ) => đpcm

Dấu "=" xảy ra <=> ad = bc => a/b = c/d 

a) (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

Biến đổi VT = (ac + bd)2 + (ad – bc)2

                       =  a2c2 + 2acbd + b2d2  + a2d2 - 2acbd + b2c2 

                   =  a2c2 + b2d2 + a2d2 + b2c2 

                   = ( a2c2 + a2d2 ) + ( b2d2 + b2c2 ) 

                  = a2.( c2 + d2 ) + b2.( d2 + c2 ) 

                  = ( c2 + d2 ).( a2 + b2 ) = VP ( điều phải chứng minh )

VT : vế trái ; VP : vế phải

18 tháng 7 2021

a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

b) Áp dụng đẳng thức ở câu a: \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\ge\left(ac+bd\right)^2\)

Dấu "=" xảy ra khi \(\left(ad-bc\right)^2=0\Leftrightarrow ad=bc\)

18 tháng 7 2021

Link tham khảo : https://hoidap247.com/cau-hoi/165024

Nguồn : hoidap247.com

Bài làm : 

a.

(ac + bd)2 + (ad – bc)2

= a2 c2 + 2acbd + b2 d2 + a2 d2 - 2adbc + b2 c2

= a2 c2 + bd2 + ad2 + b2 c2

= ( ac+ a2 d2 ) + ( bd2 + b2 c2 )

= a2 ( c2 + d2 ) + b2 ( c2 + d2 )

= ( a2 + b) . ( c2 + d2 )

Vậy (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b.

( a2 + b2 ) . ( c2 + d2 ) - ( ac + bd )2

= a2 c2 + ad2 + bc2 + bd2 - a2 c - 2acbd - bd2

= a2 d2 + bc2 - 2acbd

= ( ad )- 2ad . bc + ( bc )2

= ( ad - bc )\(\ge\)0

\(\Rightarrow\) (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Vậy (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

(ac+bd)2+(ad−bc)2=(a2+b2)(c2+d2)(ac+bd)2+(ad−bc)2=(a2+b2)(c2+d2) 

<=> a2c2+2abcd+b2d2+a2d2+b2c2−2abcd=a2c2+a2d2+b2c2+b2d2a2c2+2abcd+b2d2+a2d2+b2c2−2abcd=a2c2+a2d2+b2c2+b2d2

<=> a2b2+a2d2+b2c2+b2d2=a2c2+a2d2+b2c2+d2b2a2b2+a2d2+b2c2+b2d2=a2c2+a2d2+b2c2+d2b2 

25 tháng 10 2021
  1. a) (ac+bd)^2+(ad−bc)^2(ac+bd)^2+(ad−bc)^2

=a^2c^2+2abcd+b^2d^2+a^2d^2−2abcd+b^2c^2

=a^2.(c^2+d2)+b^2.(c^2+d^2)

=(c^2+d^2).(a^2+b^2)

b) Ta có (ac+bd)^2≤(a^2+b^2).(c^2+d^2)

⇔a^2c^2+2abcd+b^2d^2≤a^2c^2+b^2d^2+a^2d^2+b^2c^2

⇔a^2d^2−2abcd+b^2c^2≥0

⇔(ad−bc)^2≥0( Đúng )

Dấu "=" xảy ra ⇔ad=bc

9 tháng 4 2022

`Answer:`

a) \(VT=\)\(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+2acbd+b^2d^2+a^2d^2-2adbc+b^2c^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=\left(a^2c^2+a^2d^2\right)+\left(b^2d^2+b^2c^2\right)\)

\(=a^2.\left(c^2+d^2\right)+b^2.\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right).\left(c^2+d^2\right)\)

\(=VP\)

b) \(\left(ac+bd\right)^2\le\left(a^2+b^2\right).\left(c^2+d^2\right)\)

\(\Leftrightarrow\left(ac\right)^2+\left(bd\right)^2+2acbd\le\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\)

\(\Leftrightarrow2acbd\le\left(ad\right)^2+\left(bc\right)^2\)

\(\Leftrightarrow\left(ad\right)^2+\left(bc\right)^2-2abdc\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (Luôn đúng)

24 tháng 2 2022

a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2adbc+b^2c^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=\left(a^2c^2+a^2d^2\right)+\left(b^2d^2+b^2c^2\right)\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

b) \(\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ac+bd\right)^{^2}\)

\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2-a^2c^2-2abcd-b^2d^2\)

\(=a^2d^2+b^2c^2-2abcd\)

\(=\left(ad\right)^2-2ad.bc+\left(bc\right)^2\)

\(=\left(ad-bc\right)^2\ge0\)

\(=\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)

24 tháng 2 2022

a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+b^2d^2-2abcd+a^2d^2-2abcd+b^2c^2\)

\(=a^2c^2+a^2d^2+b^2d^2+b^2c^2\)

\(=\left(c^2+d^2\right)\left(a^2+b^2\right)\)

b: \(\left(ac+bd\right)^2< =\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Leftrightarrow a^2c^2+2abcd+b^2d^2-a^2c^2-a^2d^2-b^2c^2-b^2d^2< =0\)

\(\Leftrightarrow-a^2d^2+2abcd-b^2c^2< =0\)

\(\Leftrightarrow\left(ad-bc\right)^2>=0\)(luôn đúng