⊥a

 

 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

Mik đặt tên các góc ở điểm H là:H1,H2,H3,H4 nha

a)Chứng minh a//b

Vì HVÀ H2 là 2 góc kề bù

==>H2=1800-H1(vì kề bù)

      H2=1800-1300=500

Vì H1 và H2 so le trong và H=H2=1200

==>a//b

b)Chứng minh c\(\perp\)a

Vì a//b và b\(\perp\)c

==>c\(\perp\)a

Hok tốt!

Bạn kí hiệu trên hình góc \(\widehat{H_1}\)\(\widehat{H_2}\)  ( \(\widehat{H_2}\)là góc 1300 còn \(\widehat{H_1}\) là góc bên trái kề bù với \(\widehat{H_2}\)  )và góc \(\widehat{N_1}\)là góc 500 trên hình.

Chứng minh

a) Ta có: \(\widehat{H_1}\)+\(\widehat{H_2}\)= 1800 (2 góc kề bù)

      Hay: \(\widehat{H_1}\)+ 1300 = 1800

       =>   \(\widehat{H_1}\)=1800 - 1300= 500

      => \(\widehat{H_1}\)\(\widehat{N_1}\)=500

Mà: \(\widehat{H_1}\)\(\widehat{N_1}\)đang ở vị trí đồng vị 

  => a // b

b)  Ta có: c \(\perp\)b (gt)

        Mà:  a // b (cmt)

        =>  c \(\perp\)a

Ở đây mình ko có ghi giả thiết, kết luận nhưng nếu giáo viên có yêu cầu thì bạn nên ghi thêm vào nhé!Học tốt~

21 tháng 2 2017

E D C B H K x M N A

a) Xét \(\Delta BEA\)\(\Delta DCA\) có:

AE = AC (gt)

\(\widehat{BAE}=\widehat{DAC}\) (đối đỉnh)

AB = AD (gt)

\(\Rightarrow\Delta BEA=\Delta DCA\) (c.g.c)

\(\Rightarrow BE=CD\) (2 cạnh t/ư)

b) Ta có: \(BM=\frac{1}{2}BE\) (M là tđ)

\(DN=\frac{1}{2}CD\) (N là tđ)

mà BE = CD \(\Rightarrow BM=DN\)

\(\Delta BEA=\Delta DCA\) (câu a)

\(\Rightarrow\widehat{EBA}=\widehat{CDA}\) (so le trong)

hay \(\widehat{MBA}=\widehat{NDA}\)

Xét \(\Delta ABM\)\(\Delta ADN\) có:

AB = AD (gt)

\(\widehat{MBA}=\widehat{NDA}\) (c/m trên)

BM = DN (c/m trên)

\(\Rightarrow\Delta ABM=\Delta ADN\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{DAN}\) (2 góc t/ư)

\(\widehat{DAN}+\widehat{NAB}=180^o\) (kề bù)

\(\Rightarrow\widehat{BAM}+\widehat{NAB}=180^o\)

\(\Rightarrow M,A,N\) thẳng hàng.

22 tháng 2 2017

Bài làm rất công phu

18 tháng 6 2017

Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+cd< bc+dc\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (1)

\(ad< bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (2)

Từ (1), (2) \(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\left(đpcm\right)\)

18 tháng 6 2017

Ta có :

\(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+ab< bc+ab\Rightarrow a\left(d+b\right)< b\left(c+a\right)\)

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)

Lại có :

\(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\rightarrowđpcm\)

25 tháng 10 2015

b) \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)

\(\Rightarrow\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

Tự làm phần c nhé, không khó đâu

8 tháng 12 2015

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=> a=b=c=d=1

=> a20.b11.c2011 = d2042 ( = 1)            (dpcm)

8 tháng 12 2015

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

=> a =b=c =d

=> a20.b11.c2011 =d20.d11.d2011 =d20+11+2011 =d2042

8 tháng 6 2015

Trả lời:

  (1/a + 1/b + 1/c)^2 = 1/a^2 + 1/b^2 + 1/c^2 + 2/(ab) + 2/(bc) + 2/(ca) 
= 1/a^2 + 1/b^2 + 1/c^2 + 2(c+a+b)/(abc) 
= 1/a^2 + 1/b^2 + 1/c^2 (vì a+b+c=0) 

Suy ra √(1/a^2 + 1/b^2 + 1/c^2) = |1/a + 1/b + 1/c| là số hữu tỉ với a,b,c hữu tỉ khác 0.

8 tháng 6 2015

 Trên https://vn.answers.yahoo.com/question/index?qid=20130331041808AA5SbB4 bạn có thể tham khảo