Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a^3+b^3=\left(a^3+b^3+3a^2b+3ab^2\right)-3a^2b-3ab^2=\left(a+b\right)^3-3ab\left(a+b\right)\)=> điều phải c/m
b) \(a^3-b^3=\left(a^3-b^3-3a^2b+3ab^2\right)+3a^2b-3ab^2=\left(a-b\right)^3+3ab\left(a-b\right)\)=> đpcm
c) \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=-5^3-3.6.\left(-5\right)=-35\)
chứng mih rằng
a) a^3 + b^3= (a+b)^3 - 3ab (a+b)
b) a^3 - b^3= (a-b)^3 +3ab (a-b)
áp dụng: tính a^3 +b^3, biết a.b= 6 ; a+b = -5
Được cập nhật {timing(2017-08-24 22:01:41)}
Toán lớp 8 Hằng đẳng thức
Nguyễn Thị BÍch Hậu 17/06/2015 lúc 13:34
Thống kê hỏi đáp
Báo cáo sai phạm
a) a3+b3=(a3+b3+3a2b+3ab2)−3a2b−3ab2=(a+b)3−3ab(a+b)=> điều phải c/m
b) a3−b3=(a3−b3−3a2b+3ab2)+3a2b−3ab2=(a−b)3+3ab(a−b)=> đpcm
c) a3+b3=(a+b)3−3ab(a+b)=−53−3.6.(−5)=−35
Đúng 5 Học toán ngu ngu ấy mà đã chọn câu trả lời này.
a)
a) a3 + b3
= (a + b)(a2 - ab + b2)
= (a + b)(a2 + 2ab + b2 - 3ab)
= (a + b)[(a + b)2 - 3ab] = (a + b)3 - 3ab(a + b)
b)
(a - b)3 + 3ab(a - b)
= a3 - 3a2.b + 3.ab2 - b3+ 3a2b - 3ab2
= a3- b3
áp dụng
\(a^3+b^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(-5\right)^3-3.6.\left(-5\right)\)
\(=-125+90\)
\(=-35\)
a) a3 + b3 = (a + b)3 – 3ab(a + b)
Thực hiện vế phải:
(a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2
= a3 + b3
Vậy a3 + b3 = (a + b)3 – 3ab(a + b)
b) a3 – b3 = (a – b)3 + 3ab(a – b)
Thực hiện vế phải:
(a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2
= a3 – b3
Vậy a3 – b3 = (a – b)3 + 3ab(a – b)
Áp dụng:
Với ab = 6, a + b = -5, ta được:
a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)
= -53 + 3 . 6 . 5 = -125 + 90 = -35.
a) Ta có : a3 + b3 = (a + b)3 – 3ab(a + b)
=> VP = (a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2
= a3 + b3
Vậy a3 + b3 = (a + b)3 – 3ab(a + b)
b) a3 – b3 = (a – b)3 + 3ab(a – b)
=> VP = (a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2
= a3 – b3
Vậy a3 – b3 = (a – b)3 + 3ab(a – b)
Áp dụng:
Với ab = 6, a + b = -5, ta được:
a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)
= -53 + 3 . 6 . 5 = -125 + 90 = -35.
giải
a) Ta có:
VP=(a+b)3−3ab(a+b)
=a3+3a2b+3ab2+b3−3a2b−3ab2
=a3+b3=VT (đpcm)
b) Ta có:
VP=(a−b)3+3ab(a−b)
=a3−3a2b+3ab2−b3+3a2b−3ab2
=a3−b3=VT (đpcm)
Áp dụng:
Với ab=12 và a+b=−7 ta có:
a3+b3=(a+b)3−3ab(a+b)
=(−7)3−3.12.(−7)=−91
a: \(\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2\)
\(=a^3+b^3\)
b: \(\left(a-b\right)^3+3ab\left(a-b\right)\)
\(=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)
\(=a^3-b^3\)
a) a3 + b3 = (a + b)3 - 3ab(a + b)
Ta có:\(VP=\) \(a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
= \(a^3+b^3\)\(=VT\)
Vậy a3 + b3 = (a + b)3 - 3ab(a + b)
b) a3 - b3 = (a - b)3 - 3ab(a - b)
Ta có: VP =\(a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)
= \(a^3-b^3=VT\)
Vậy a3 - b3 = (a - b)3 - 3ab(a - b)
a)\(\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)
\(=a^3+b^3\)
b)\(\left(a-b\right)^3+3ab\left(a-b\right)\)
\(=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)
\(=a^3-b^3\)
a) HS tự chứng minh.
b) Áp dụng tính được:
i) 9261; ii) 7880599;
iii) 5840; iv) 12140.