Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6410 -32 11 - 1613 = 260 - 255 - 252 = 252 . 28 - 252 . 23 - 252
= 252 ( 28 - 23 - 1)
= 252 . 247 = 252 . 19 . 13
=> chia hết cho 19
Chia 195 thành ba phần x; y; z (0 < x;y;z < 195) với tỉ lệ 3 5 ; 1 3 4 ; 9 10
Ta có: x 3 5 = y 1 3 4 = z 9 10 ⇔ x 3 5 = y 7 4 = z 9 10 và x+y+z =195
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x 3 5 = y 7 4 = z 9 10 = x + y + z 3 5 + 7 4 + 9 10 = 195 13 4 = 60
Do đó : x = 60. 3 5 = 36 ; y = 60. 7 4 = 105 ; z = 60. 9 10 = 54
Phần lớn nhất là 105
Đáp án cần chọn là B
a) So sánh: \(9^{10}với8^9+7^9+6^9+...+1^9\)
b) Chứng minh: \(\left(36^{36}-9^{10}\right)⋮45\)
Đề đúng đó bạn, mong ae làm giúp nhé !
a)
Ta có :
106 + 57
= (2 x 5)6 + 57
= 26 x 56 + 57
= 26 x 56 + 56 x 5
= 56 x (26 + 5)
= 56 x 69
Vì 69 ⋮ 69 => 56 ⋮ 69 => 106 + 57 ⋮ 69
b)
Ta có :
220 - 217
= 217 x 23 - 217 x 1
= 217 x (23 - 1)
= 217 x 7
Vì 7 ⋮ 7 => 217 x 7 ⋮ 7 => 220 - 217 ⋮ 7
k nha bn !!!
a) \(A=7+7^2+...+7^{99}\)
\(7A=7^2+7^3+...+7^{100}\)
\(7A-A=7^2+7^3+...+7^{100}-7-7^2-...-7^{99}\)
\(6A=7^{100}-7\)
\(A=\frac{7^{100}-7}{6}\)
Mà 7100 > 7100 - 7 => A < \(\frac{7^{100}}{6}\)
b) \(A=7+7^2+...+7^{99}\)
\(A=\left(7+7^2+7^3\right)+...+\left(7^{97}+7^{98}+7^{99}\right)\)
\(A=\left(7+7^2+7^3\right)+...+7^{96}.\left(7+7^2+7^3\right)\)
\(A=399+...+7^{96}.399\)
\(A=399.\left(1+...+7^{96}\right)⋮19\left(đpcm\right)\)
220 đồng dư với 2(mod 2)
=>\(220^{119^{69}}\)đồng dư với 0(mod 2)
119 đồng dư với 1(mod 2)
=>\(119^{69^{220}}\)đồng dư với 1(mod 2)
69 đồng dư với 1(mod 2)
=>\(69^{220^{119}}\)đồng dư với 1(mod 2)
=>\(220^{119^{60}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 2
220 đồng dư với 1(mod 3)
=>\(220^{119^{69}}\)đồng dư với 1(mod 3)
119 đồng dư với -1(mod 3)
=>\(119^{69^{220}}\)đồng dư với -1(mod 3)
69 đồng dư với 0(mod 3)
=>\(69^{220^{119}}\)đồng dư với 0(mod 3)
=>\(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 3
220 đồng dư với -1(mod 17)
=>\(220^{119^{69}}\)đồng dư với -1(mod 17)
119 đồng dư với 0(mod 17)
=>\(119^{69^{220}}\)đồng dư với 0(mod 17)
69 đồng dư với 1(mod 17)
=>\(69^{220^{119}}\)đồng dư với 1(mod 17)
=>\(220^{119^{69}}+119^{220^{69}}+69^{220^{119}}\)chia hết cho 17
vì (2;3;17)=1=>\(220^{119^{69}}+119^{220^{69}}+69^{220^{119}}\)chia hết cho 102
=>đpcm
ý a ) bạn dưới chứng minh rồi nha ; mình làm ý b
Ta có :
\(8^9< 9^9\)
\(7^9< 9^9\)
\(6^9< 9^9\)
\(........\)
\(1^9>9^9\)
Cộng vế với vế ta được :
\(8^9+7^9+...+1^9< 9^9+9^9+...+9^9\) (có 8 số hạng \(9^9\) ) \(=8.9^9< 9.9^9=9^{10}\)
Vậy \(8^9+7^9+6^9+....+1^9< 9^{10}\)
a,(36^36-9^10):45
vì 45=9x5
=>(36^36-9^10) chia hết cho 9(1)
36^36 tận cùng là 6
9^10 tận cùng là 1
=>36^36-9^10 tận cùng là 5 và do đó chia hết cho 5
Vì 5 và 9 là 2 số nguyên tố cùng nhau nên từ (1),(2)=>36^36-9^10 chia hết cho 45