K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2021

cái đầu tiên là x2+2y2 nha

29 tháng 8 2021

a)

\(x+2y=5\Leftrightarrow x=5-2y\)

Thay vào ta được

\(M=\left(5-2y\right)^2+2y^2=25-20y+4y^2+y^2=6y^2-20y+25=6\left(y^2-\frac{10}{3}y+\frac{25}{9}\right)+\frac{25}{3}=6\left(y-\frac{5}{3}\right)^2+\frac{25}{3}\)

Mà \(6\left(y-\frac{5}{3}\right)^2\ge0\forall y\Leftrightarrow6\left(y-\frac{5}{3}\right)^2+\frac{25}{3}\ge\frac{25}{3}\)

Dấu '' = '' xảy ra \(\Leftrightarrow y=\frac{5}{3}\)

\(\Rightarrow x=\frac{5}{3}\)

\(\Rightarrow MinM=\frac{25}{3}\Leftrightarrow x=y=\frac{5}{3}\)

19 tháng 12 2020

A= -x2+2x+3

=>A= -(x2-2x+3)

=>A= -(x2-2.x.1+1+3-1)

=>A=-[(x-1)2+2]

=>A= -(x+1)2-2

Vì -(x+1)≤0=> A≤-2

Dấu "=" xảy ra khi

-(x+1)2=0 => x=-1

Vây A lớn nhất= -2 khi x= -1

19 tháng 12 2020

B=x2-2x+4y2-4y+8

=> B= (x2-2x+1)+(4y2-4y+1)+6

=> B=(x-1)2+(2y+1)2+6

=> B lớn nhất=6 khi x=1 và y=-1/2

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

16 tháng 1 2023

x2 - 3y2 + 2xy + 2x - 4y - 7 = 0

<=> 4.(x2 - 3y2 + 2xy + 2x - 4y - 7) = 0

<=> 4x2 - 12y2 + 8xy + 8x - 16y - 28 = 0

<=> (4x2 + 8xy + 4y2) + (8x + 8y) + 4 - 16y2 - 24y - 32 = 0

<=> (2x + 2y)2 + 4(2x + 2y) + 4 - (16y2 + 24y + 9) = 23

<=> (2x + 2y + 2)2 - (4y + 3)2 = 23

<=> (2x + 6y + 5)(2x - 2y - 1) = 23

\(x;y\inℤ\Rightarrow2x+6y+5;2x-2y-1\inℤ\) 

Lập bảng : 

2x + 6y + 5 1 23 -1 -23
2x - 2y - 1 23 1 -23 -1
x 17/2(loại) 3 -9 -7/2(loại)
y   2 2  

Vậy (x;y) = (3;2) ; (-9;2) 

2 tháng 8 2021

Ta có:

D=2x2+3y2+4xy−8x−2y+18C=2x2+3y2+4xy−8x−2y+18

D=2(x2+2xy+y2)+y2−8x−2y+18C=2(x2+2xy+y2)+y2−8x−2y+18

D=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1C=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1

D=2(x+y−2)2+(y+3)2+1≥1C=2(x+y−2)2+(y+3)2+1≥1

Dấu "=" xảy ra ⇔x+y=2⇔x+y=2và y=−3y=−3

Hay x = 5 , y = -3

Đc chx bạn

2 tháng 8 2021

12 tháng 10 2019

\(2x^2+2y^2+z^2+2xy+2yz+2zx+2x+4y+5\)

\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+2x+1\right)+\left(y^2+4y+4\right)\)

\(=\left(x+y+z\right)^2+\left(x+1\right)^2+\left(y+2\right)^2=0\)

Mà: \(\hept{\begin{cases}\left(x+y+z\right)^2\ge0\\\left(x+1\right)^2\ge0\\\left(y+2\right)^2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+y+z\right)^2=0\\\left(x+1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x+1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+z=0\\x=-1\\y=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}z=3\\x=-1\\y=-2\end{cases}}\)