Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1+sin^2a}{1-sin^2a}=\frac{1+sin^2a}{cos^2a}=\frac{1}{cos^2a}+\frac{sin^2a}{cos^2a}=1+tan^2a+tan^2a=1+2tan^2a\)
\(\frac{cosa}{1+sina}+tana=\frac{cosa}{1+sina}+\frac{sina}{cosa}=\frac{cos^2a+sina+sin^2a}{cosa\left(1+sina\right)}=\frac{1+sina}{cosa\left(1+sina\right)}=\frac{1}{cosa}\)
\(\frac{sina}{1+cosa}+\frac{1+cosa}{sina}=\frac{sin^2a+cos^2a+2cosa+1}{\left(1+cosa\right)sina}=\frac{2+2cosa}{\left(1+cosa\right)sina}=\frac{2\left(1+cosa\right)}{\left(1+cosa\right)sina}=\frac{2}{sina}\)
vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-
\(\frac{1}{cos^2a}=1+tan^2a\Rightarrow cos^2a=\frac{1}{1+tan^2a}=\frac{1}{10}\)
a/ \(\frac{sina-cosa}{sina+cosa}=\frac{\frac{sina}{cosa}-\frac{cosa}{cosa}}{\frac{sina}{cosa}+\frac{cosa}{cosa}}=\frac{tana-1}{tana+1}=\frac{3-1}{3+1}\)
b/ \(\frac{2sina+3cosa}{3sina-5cosa}=\frac{3tana+3}{3tana-5}=\frac{3.3+3}{3.3-5}\)
c/ \(\frac{1+2cos^2a}{1-cos^2a-cos^2a}=\frac{1+2cos^2a}{1-2cos^2a}=\frac{1+2.\frac{1}{10}}{1-2.\frac{1}{10}}\)
d/ \(\frac{\left(1-cos^2a\right)^2+\left(cos^2a\right)^2}{1+1-cos^2a}=\frac{\left(1-\frac{1}{10}\right)^2+\left(\frac{1}{10}\right)^2}{2-\frac{1}{10}}\)
\(sin^6a+cos^6a=\left(sin^2x\right)^3+\left(cos^2x\right)^3\)
\(=\left(sin^2x+cos^2x\right)\left(sin^4x+cos^4x-sin^2x.cos^2x\right)\)
\(=sin^4x+2sin^2xcos^2x+cos^4x-3sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-\frac{3}{4}.\left(2sinx.cosx\right)^2\)
\(=1-\frac{3}{4}sin^22x=1-\frac{3}{4}\left(\frac{1}{2}-\frac{1}{2}cos4x\right)=\frac{5}{8}+\frac{3}{8}cos4x\)
2/
\(\frac{1+sin2a-cos2a}{1+cos2a}=\frac{1+2sina.cosa-\left(1-2sin^2a\right)}{1+2cos^2a-1}=\frac{2sina.cosa+2sin^2a}{2cos^2a}\)
\(=\frac{2sina.cosa}{2cos^2a}+\frac{2sin^2a}{2cos^2a}=tana+tan^2a\)
a) P = sin2α + sin2α.\(\frac{cos\text{α}}{sin\text{α}}\) + cos2α - cos2α.\(\frac{sin\text{α}}{cos\text{α}}\)
=sin2α + sinα.cosα + cos2α - cosα.sinα
=sin2α + cos2α
=1
Vậy P không phụ thuộc vào α
b) Q= -cos4α(2cos2α -1 -2) +sin4α(1 -2sin2α+2)
= -cos4α(cos2α -2) +sin4α(cos2α +2)
=-cos4α.cos2α +2cos4α +sin4α.cos2α +2sin4α
=cos2α(sin4α -cos4α) +2(sin4α +cos4α)
=cos2α [\(\left(\frac{1-cos^22\text{α}}{2}\right)^2-\left(\frac{1+cos^22\text{α}}{2}\right)^2\)]+2.[\(\left(\frac{1-cos^22\text{α}}{2}\right)^2+ \left(\frac{1+cos^22\text{α}}{2}\right)^2\)]
= -cos2α.cos2α +1+cos22α
= -cos22α +1+cos22α
=1
Vậy Q không phụ thuộc vào α
a)
\(\sin ^4a-\cos ^4a+1=(\sin ^2a-\cos ^2a)(\sin ^2a+\cos^2a)+1\)
\(=(\sin ^2a-\cos ^2a).1+1=\sin ^2a-\cos ^2a+\sin ^2a+\cos ^2a\)
\(=2\sin ^2a\)
b) \(\sin ^2a+2\cos ^2a-1=(\sin ^2a+\cos^2a)+\cos ^2a-1\)
\(=1+\cos ^2a-1=\cos ^2a\)
\(\Rightarrow \frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{\frac{\cos ^2a}{\sin ^2a}}=\sin ^2a\)
c)
\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)
\(=\frac{1}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\frac{1}{\cos ^2a}-1\)
\(=\frac{1-\cos ^2a}{\cos ^2a}=\frac{\sin ^2a}{\cos ^2a}=\tan ^2a\)
d)
\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}\) \(=\frac{\sin ^2a(1-\frac{1}{\cos ^2a})}{\cos ^2a(1-\frac{1}{\sin ^2a})}\)
\(=\frac{\sin ^2a.\frac{\cos ^2a-1}{\cos ^2a}}{\cos ^2a.\frac{\sin ^2a-1}{\sin ^2a}}\) \(=\frac{\sin ^2a.\frac{-\sin ^2a}{\cos ^2a}}{\cos ^2a.\frac{-\cos ^2a}{\sin ^2a}}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)
f)
\(\frac{(\sin a+\cos a)^2-1}{\cot a-\sin a\cos a}=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\frac{\cos a}{\sin a}-\sin a\cos a}\)
\(=\sin a.\frac{1+2\sin a\cos a-1}{\cos a-\cos a\sin ^2a}\)
\(=\sin a. \frac{2\sin a\cos a}{\cos a(1-\sin ^2a)}=\sin a. \frac{2\sin a\cos a}{\cos a. \cos^2 a}=\frac{2\sin ^2a}{\cos ^2a}=2\tan ^2a\)
a/ Ta có: \(tan\alpha=5\Rightarrow cot\alpha=\frac{1}{5}\) . Đề: \(\frac{sin\alpha}{sin^3\alpha+cos^3\alpha}=\frac{\frac{1}{sin^2\alpha}}{1+\frac{cos^3\alpha}{sin^3\alpha}}=\frac{1+cot^2\alpha}{1+cot^3\alpha}=\frac{1+\left(\frac{1}{5}\right)^2}{1+\left(\frac{1}{5}\right)^3}=\frac{65}{63}\)
b/ Ta có vế trái \(=\frac{sin^2x+cos^2x+cos^2x-sin^2x+\left(sinx+sin3x\right)}{1+2sinx}=\frac{2cos^2x+2.sin2x.cosx}{1+2sinx}=\frac{2cos^2x+4.sinx.cos^2x}{1+2sinx}=\frac{2cos^2x.\left(1+2sinx\right)}{1+2sinx}=2cos^2x\) ( = vế phải)