Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi N là trung điểm của AC. Nối N với O và M.
Do H là trực tâm \(\Delta\)ABC => ^BAH + ^ABC = 900 (1)
Dễ thấy MN là đường trung bình \(\Delta\)ABC => MN // AB => ^NMC = ^ABC (2)
Lại có: ^NMO + ^NMC = 900 (3)
Từ (1); (2) và (3) => ^BAH = ^NMO. Tương tự: ^ABH = ^MNO
=> \(\Delta\)AHB ~ \(\Delta\)MON (g.g) => \(\frac{AH}{MO}=\frac{AB}{MN}=2\)(Do MN là đg trung bình \(\Delta\)ABC)
\(\Rightarrow\frac{AH}{MO}=\frac{AI}{MI}=2\)(Vì I là trọng tâm và AM là trung tuyến \(\Delta\)ABC)
Xét \(\Delta\)AHI và \(\Delta\)MOI: ^HAI = ^OMI (Do AH // OM); \(\frac{AH}{MO}=\frac{AI}{MI}\)=> \(\Delta\)AHI ~ \(\Delta\)MOI (c.g.c)
\(\Rightarrow\frac{IH}{IO}=\frac{IA}{IM}=2\Rightarrow IH^2=4.IO^2\).Tương tự \(HA^2=4.OM^2\)
\(\Rightarrow\sqrt{\frac{IO^2+OM^2}{IH^2+HA^2}}=\sqrt{\frac{IO^2+OM^2}{4\left(IO^2+OM^2\right)}}=\frac{1}{2}.\)
ĐS: 1/2.